In this Issue

The Presidents Page .. 2
Commission "Identification of Entomophagous Insects". Guidelines for preservation, labelling, and shipping of specimens .. 3
WG "Pheromones and other Semiochemicals" – Report ... 6
WG "Integrated Control in Cereals" – Report ... 8
SG "Induced Resistance in Plants ..." – First Meeting ... 8
WG "Biological Control of Fungal and Bacterial Plant Pathogens" – Presentation and Meeting ... 11
WG "Integrated Control in Glasshouses Northern Section" – Report ... 15
WG "Integrated Control in Protected Crops, Mediterranean Climate" – Meeting 15
WG "Plant Protection in Orchards" and "Plant Protection in Stone Fruit" – Meeting 16
WGroup "Integrated Protection of Stored Products" – Report ... 17
SG "Integrated Control of Soil Pests – SG Pathology of Nematodes" – Meeting 18
WG "Pesticides and Beneficial Organisms" – Report and Meeting ... 19
SG "Integrated Control of Soil Pests" – Report .. 20
WG "Insect Pathogens and Insect Parasitic Nematodes" – Report .. 21
IOBC/wprs Officers and their Addresses ... 22
New IOBC/wprs Publications ... 26
Other Interesting Publications ... 42
Time-Table of Forthcoming Events .. 44

IOBC/wprs homepage: http://iobc.ethz.ch
The Presidents Page

Since the last issue of Profile the WPRS Council in full has met in Gent, Belgium. Here the budget for the next two years has been adjusted and approved. The Convenors of Working Groups, Study Groups and Commisions should have received all information from the Treasurer Dr. C. Gessler.

At the same meeting also some WG-issues were discussed, among others change of convenors and bureaucratic papers. Apart from very minor problems created by misunderstandings, the system installed during the last general assembly, and later explained in the Convenors Handbook, is applied. In the connection I have the pleasure of thanking once more the outgoing convenors. I also welcome the new convenors and kindly request their attention for the C.’s Handbook, among others for the registration form for participation in meetings.

Interestingly many people have expressed their satisfaction while a few have expressed consideration on bureaucratic growth. This brings me to point kindly on the most important elements of the registration form.

- Limitation of the loss of effort by repeatedly writing letters about the same questions and issues from convenors and the by producing the same replies from the Exe. Comm.
- Changing from a complicated, time-consuming procedure concerning Bulletin copies to well established orderly system.
- Last but not least preventing an erosion of member paid funding by demanding payment for Bull. copies from non-members and members who want copies in excess of their membership payment.

I hope this explanation may make it more clear to everybody that what may appear as a bureaucratic step is a streamlining of procedures.

In connection to WG activities the Council has also try to clarify some matters with IOBC/ Global. Thus exceptions from the normally strong recommendation to arrange WG-meetings within or very close to the to the region may in particular cases be accepted. For instance there may be mutual interests leading once in a while (eg. once in 5-6 years) to a larger conference-like meeting with participants from 2-3 regional sections placed outsiders WPRS. In such a case the Council (Exe. Comm.) may decide to support WPRS members through the Convenor of the relevant WPRS WG in the normal way. Besides this Global IOBC has decided to regard this as a global activity which may receive a certain support (mostly within the range of US$ 1000) to assist people from less wealthy countries.
A last most important and very sad issue is the lacking copies of BioControl. *I personally and the president of Global IOBC very much regret this inconvenience to members.* However, a meeting between Global IOBC, IOBC/WPRS and representatives from Kluwer seems to have sorted out the problems. Kluwer has regretted certain mistakes and some misunderstandings between Global IOBC and WPRS have been cleared.

On this background I do hope that all members will by early year 2000 be up to date with BioControl at least up to Vol. 44, Issue 3, 1999. (Our check-ups have indicated that copies are now streaming out).

With this better promise for year 2000 I also want to express to all members, Convenors and Council members

The very best wishes for the new Millenium.

Peter Esbjerg

Commission "Identification of Entomophagous Insects" Guidelines for preservation, labelling, and shipping of specimens

Convenor: Mr. H. Baur, Department of Invertebrates, Natural History Museum, Bernastrasse 15, CH-3005 Bern, Switzerland,
E-mail: hannes.baur@nmbe.unibe.ch, Fax: +41 (0)31 350 74 99.

The principal aim of the commission is the compilation of a reliable database of insect pest species and their natural enemies. In close connection with this goal an identification service is provided for researchers who need help with the identification of entomophagous insects. *This service is free for members of the IOBC.*

Diptera (Tachinidae) should be sent directly to:

Dr Hans-Peter Tschorsnig, Naturkundemuseum, Rosenstein 1, D-70191 Stuttgart (Germany).

But parasitic **Hymenoptera** should be sent to the convenor, where the material will be distributed to the relevant specialist(s). The list of these specialists currently comprises about twenty taxonomists working
on various groups of parasitic Hymenoptera (Chalcidoidea, Ichneumono-
idea, Platygastroidea, etc.). With regard to an expected occurrence of
more than ten thousand species of hymenopteran parasitoids alone in
the West Palearctics, the number of competent systematists is extremely
low. Hence, the capacities to cope with the possible amount of identifica-
tions are very limited.

Unfortunately, material for identification often arrives in poor condition.
This results at best in some delay, but sometimes makes proper
identification at species level impossible. In order to facilitate the work of
the convenor as well as the taxonomist the following brief guidelines on
preservation, labelling, and shipping of specimens should be followed:

- Kill specimens in vapour (2-3 drops on some tissue for a vial of 100
 ml) of ethyl acetate (= Essigsäure-Ethylester, "Essigäther"). Prevent
direct contact with any liquid (ethyl acetate, alcohol, water, etc.) at any
time.

- Hymenoptera should be stored in a matchbox and be spread out on
 a layer of cotton wool. Cover specimens with a sheet of paper and
 another layer of cotton wool. Press layers very gently, just to prevent
 movement of specimens.

- Diptera should either be pinned immediately after killing (the
 preferable way) or can be preserved freshly in 75 % alcohol.
 Specimens which are found already dead and dry among the host
 material should carefully be glued in lateral position on the tip of a
 pinned card point.

- Label each matchbox, each vial, or each pinned specimen with the
 following minimal data (if available): country, province, locality,
 altitude, date of collection of material, collector, and stage of host;
 host name (including its higher level classification such as order and
 family); host plant (including plant family); date of eclosion of the
 parasitoid imago from the host.
• Ship boxes in a **sturdy parcel** using a **thick layer** (at least 8-10 cm on each side) of convenient **stuffing material**.

If these instructions are followed breakage can be avoided and the specimens are easily relaxed and mounted in a suitable way by the specialist. However, if specimens of more than a few species are submitted for identification, then the material should already be mounted. There are many papers dealing with this topic and suitable methods concerning parasitoids can be found in the references below. It should be stressed, finally, that preservation in alcohol results in serious problems with regard to preservation, mounting, and identification, and that Hymenoptera never must be put in alcohol therefore. The preservation of Diptera in alcohol is possible, when there was no other possibility of mounting.

References

The annual meeting of the IOBC-WPRS Working Group "Use of pheromones and other semiochemicals in integrated control", was held at Hohenheim near Stuttgart, Germany, November 10 - 12, 1999. The topic of this meeting was restricted to the practical use of pheromones in orchards and vineyards, with an emphasis on the situation in Germany, Italy and Switzerland. The next meeting covering a wider range of topics will be held on Samos, September 2000. The Hohenheim meeting gathered ca. 60 attendees from academic research institutions, plant protection industry and extension services. The list of participants, abstracts and the programme are available at our website (http://phero.net/iobc).

Background

The development of new pest control methods is a necessity, also because the use of a number of well-established insecticides has been restricted or banned within the past few years, leaving the growers with but a few efficient compounds. Even for conventional fruit- and wine-growers, alternative methods will become increasingly important over the next couple of years.

Conclusions

Mating disruption by pheromones. The mating disruption technique is close to a commercial breakthrough, but must become more economic and more reliable. Especially at high population densities, most species cannot be controlled by mating disruption alone.

Today, the most important work is done by growers and pest control experts who coordinate and survey the practical use of pheromones. Successful use of mating disruption requires basic knowledge of dispenser materials, active ingredients and their effect on insect behaviour, as well as the population dynamics of the pest species. Another crucial issue is the assessment of damage during the season.

For future developments, we must put stronger emphasis on a multidisciplinary approach. This can only be achieved if we succeed in intensifying communication and collaboration between research institu-
tions, the chemical industry and extension organizations. The Working Group has traditionally been a forum for the exchange of information between these groups, but we need to establish and reinforce active collaborations.

A speaker from North America, who regularly attends our Working Group meetings, gave an account of the largest single application of mating disruption against codling moth. The area-wide management programme in the Northwestern USA covers ca. 30 000 ha. This project benefits from a strong involvement of local universities (Washington State University, Oregon State University). The combined use of pheromone and a reduced insecticide programme is, at present, considered as a satisfactory solution. The stakes in Europe are often higher, plant protection experts and researchers involved in pheromone applications clearly aim to avoid insecticide use altogether. However, taking two steps at once may have a negative effect on the motivation for continued work if problems are encountered. Where current pheromone blends and dispensers do not allow control without additional insecticide treatments, projects are all too soon considered as a failure or are not initiated at all.

Other biological techniques. The mating disruption technique is available only for key species and must become more reliable at high population densities. Insect pathogens, parasites and predators are efficient antagonists for a range of insects, and will certainly complement and enhance the efficacy of pheromonal methods.

Pheromone lures for detection and monitoring. Pheromone traps are an efficient, inexpensive tool to specifically detect the presence of insects and to monitor their flight periods. Pheromone traps are commercially available for virtually all economically important lepidopteran species, from a number of companies - but these lures vary greatly in efficacy. This is due to a varying degree of purity of the starting. In addition, inadvertent changes in dispenser materials, lure composition and dose from one year to the other excludes the use of these traps for monitoring population levels. The Working Group is engaged in the quality control of pheromone lures and is trying to advocate the principle of "batch certification": batches of synthetic pheromones formulated on a specific dispenser material must be field-tested before they are marketed. New lures containing a new batch of chemicals, or formulated on different dispensers, must be compared to the previously used lures, and the user must be given access to this data (http://phero.net).

Upcoming meeting of the WG Pheromones
The upcoming meeting at Samos, September 25-29, 2000 marks the 25th anniversary of the Pheromone Working Group. The meeting covers
research on the biology and chemistry of behaviourally active compounds of plant and insect origin. An emphasis is placed on practical applications, but even basic studies, opening new strategies for safe insect control, will be considered.

WG Integrated Control in Cereals

Report on the WPRS and EPRS Joint Meeting in Gödöllő, 9-12 September, 1999

The local organizer was Dr. József Kiss from Gödöllő University, Czech Republic. A total of thirtythree scientists – 13 from IOBC/wprs and 20 from IOBC/eprs – of twelve countries attended the meeting and contributed to the meeting discussions with 19 oral presentations and 13 posters. They dealt mainly with the following topics: Situation of IPM in cereal crops; natural enemies of aphids and other cereal pests; cereal resistance to aphids and other arthropods; aphid morphology and development, description and management of cereal arthropod biocenosis.

Ramon Albajes, liaison officer

IOBC/WPRS Study Group „Induced resistance in plants against insects and diseases“

First meeting, 26-28 April 2001

Recently, the organising committee of the newly formed study group „Induced resistance in plants against insects and diseases“ had its first gathering. It was decided that the first meeting organised by this study group will be held in Wageningen, The Netherlands, on 26-28 April 2001. Aim of the meeting is to bring together researchers working on fundamental and applied aspects of induced resistance (IR) or tolerance, in order to

i) gain a better understanding of the general and causal processes involved in induced defence reactions of plants, against both, insects and plant pathogens, and

ii) to discuss the applicability of IR in practical plant protection.

To meet these goals, the sessions will cover the two main topics:
1. Cross-talk among herbivore- and pathogen-induced signal cascades

2. Risks and benefits of induced resistance and tolerance

Besides these, contributions related to other aspects of IR or tolerance will be accepted for further sessions (see pre-registration form, point 3). Scientists and Ph.D. students working on entomological and phytopathological aspects of IR or tolerance in plants are hereby invited to pre-register their interest to participate (see attached form).

Pre- and final registration forms, and all up-coming information will soon be available on the IOBC/WPRS homepage: http://iobc.ethz.ch

Please send your pre-registration to

Dr. Annegret Schmitt,
Federal Biological Research Centre for Agriculture and Forestry,
Institute for Biological Control, Heinrichstr. 243, D-64287 Darmstadt, Germany
e-mail: anne.schmitt.biocontrol.bba@t-online.de
Tel. 0049 6151 407241
Fax 0049 6151 407290

If the number of registrants exceeds the capacity of the meeting facilities, priority will be given to participants making a contribution.

Scientific committee members

ANNEGRET SCHMITT (convenor)
Federal Biological Research Centre for Agriculture and Forestry,
Darmstadt, Germany

IAN T. BALDWIN
Max Planck Institute for Chemical Ecology, Jena, Germany

MARCEL DICKE
Wageningen University, Wageningen, The Netherlands

ERKKI HAUKIOJA
University of Turku, Turku, Finland

BRIGITTE MAUCH-MANI
University Fribourg, Fribourg, Switzerland

VIGGO SMEDEGAARD-PETERSON
Royal Veterinary and Agricultural University, Copenhagen, Denmark
Preliminary Registration Form

„Induced resistance in plants against insects and diseases“

Name: __
Address: __
__
__
__
e-mail: __
Fax: ___
Phone: __

! I would like to attend the IOBC meeting in Wageningen, 26 – 28 April 2001 and wish to receive further information

! I intend to present a paper or poster in one of the following sessions

☐ 1. Cross-talk among herbivore- and pathogen-induced signal cascades
☐ 2. Risks and benefits of induced resistance and tolerance

! 3. Others, please specify:
__
__
__
Presentation of the IOBC/wprs Working Group
“Biological Control of Fungal and Bacterial Plant Pathogens”

Convenor:
Yigal Elad, Dept of Plant Pathology, The Volcani Center, Bet Dagan
50250, Israel, e-mail: elady@netvision.net.il Tel. +972 3 9683580, Fax +972 3 9683688

Group Management Committee:
C. Alabouvette, INRA, Dijon, France; G. Defago, ETH-Zurich; Y. Elad, VC, Bet Dagan, Israel; D. Funk-Jensen, RVAU,
Copenhagen, Denmark; J. Köhl, IPO-DLO, Wageningen, The Netherlands; J.M. Whipps, HRI, Wellesbourne, UK

Aim:
The goal of this Working Group is to promote cooperation between scientists involved in biocontrol of plant pathogens and to exchange expertise on biological control in the West Palaearctic Region in order to support the implementation of biocontrol in agriculture.

Active members:
Scientists and students at all levels, extension and field experts and people involved in production and testing biologicals.

The management:
The group is associated with the working group “Biological Control” of the European Foundation for Plant Pathology (EFPP) through a joint management committee. For the IOBC/wprs it consists of Y. Elad, VC, Bet Dagan, Israel; C. Alabouvette, INRA, Dijon, France and; J. Köhl, IPO-DLO, Wageningen, The Netherlands and for the EFPP G. Defago, ETH-Zurich, Switzerland; D. Funk-Jensen, RVAU, Copenhagen, Denmark; and J.M. Whipps, HRI, Wellesbourne, UK.

Activities:
Organization of workshops for scientists, students, field and extension personnel, producers and users of biocontrol agents and methods aimed at fungal and bacterial biocontrol. The workshops focus on specific subjects related to biocontrol and on biocontrol of specific groups of plant pathogens. Some examples to the interest of the group are:

- Biocontrol of foliar pathogens (necrotrophs, biotrophs)
Biocontrol of soil-borne diseases
Modes of action of biocontrol agents
Combination of biocontrol with other disease control measures
Improving biocontrol activity
Commercial biocontrol products
Molecular techniques to monitor, improve or study biocontrol agents and their interaction with pathogens and plants

Participants in workshops present information in form of scientific presentations. The information is published.

If you wish to be informed about the future activities of the group send your details (as new participant or for updating) by email to the convenor. Details needed: Full name (underlining last name), Affiliation and address of institute, fax, phone and email address.

Future communication will be carried out by email.

Yigal Elad

*** *** ***

IOBC/wprs WG “Biological Control of Fungal and Bacterial Plant Pathogens”

First Announcement of a Workshop:
Biocontrol Agents Modes of Action and Their Interaction with Other Means of Control
Seville, Spain, 1-4 December 2000

Dear Colleagues,

Our working group will have a meeting in Seville on 1-4 December 2000. It will be organized by our colleagues ENRIQUE MONTE (Salamanca) and ANTONIO LLOBEL (Sevilla) in Sevilla. The workshop will take place in
El Monte Conference Hall in Sevilla and accommodation will be in city hotels.

Sevilla is easily accessed from outside Spain. It has pleasant weather during December. Apart from being a tourist attraction by itself it is situated near the Coto Donana Park (the most important bird reserve in Europe) and places associated with Christopher Columbus in Huelva that we may visit.

The themes of the workshop will be: “Biocontrol agents modes of action and their interaction with other means of control”. The aim of the workshop is double: i. to present research and discuss potential modes of action of biocontrol agents and preparations that are effective against fungal and bacterial diseases. ii. Study their interaction with other plant disease control means. The general aim is to bring together students, researchers and implementers of biocontrol of plant diseases to discuss potential improvements of biocontrol activity. Presentations will be carried out orally or as posters, in English, and ample amount of time will be devoted to discussions.

We expect up to 150 participants from Europe and Mediterranean countries to participate in the workshop, as was the case in our earlier workshops. It is too early to give you precise information about the duration and time schedule of the workshop, however, we expect that it will last 3 days and one extra day will be devoted to a field trip. As was done in the past, we expect to publish short papers of the presentations in the frame of the IOBC/wprs Bulletin, however, this matter is not finalized yet. The second information circular will be out on April 2000. At that time you will be informed regarding time, costs, publication etc.

We look forward to seeing you in Sevilla, Spain next year.

Yigal Elad, Enrique Monte and Antonio Llobel

Please respond until March 2000 (preferably by E-mail) and pass to colleagues that may be interested in attending our workshops. The second circular will be sent to those responded to the first circular. Information on the working group and updates about workshops:
PRE-REGISTRATION FORM

IOBC/wprs Working Group
Biological Control of Fungal and Bacterial Plant Pathogens

Workshop Biocontrol Agents Modes of Action and Their Interaction with Other Means of Control
Sevilla, Spain, December 1-4, 2000

Name: First name and initial(s):

Address: ..
..
..

Email (important): ..
Phone ..Fax..

I wish to attend the workshop and would like to receive the second circular .☐
I wish to give the following presentation .. ☐
Tentative title of presentation:

I will not be able to attend the December2000 workshop ☐
but wish to be informed about future activities.

I suggest to include the following person(s) in the mailing list:
Name: ...
Address: ...
..
..

Email (important): ...

Please fill in the form and mark the empty squares where appropriate.
Return (preferably by E-mail) to:
Dr. Yigal Elad E-mail: elady@netvision.net.il
(Dept. of Plant Pathol., The Volcani Center, Bet Dagan 50250, Israel)
WG “Integrated Control in Glasshouses Northern Section”, last Meeting

The working group Integrated Control in Glasshouses Northern Section has held its last meeting in Brest (France) from 25-29 May 1999. About 100 persons took part in this meeting. The meeting was organised by J.C. MAISONNEUVE (Brest) and J.C. VAN LENTEREN. Topics addressed at the meeting included among other things intraguild predation, registration of microbial and macrobial natural enemies, IPM in vegetables and ornamentals, biological control of various glasshouse pests, decision support and modelling in IPM, and quality control. For details, see STING No. 19 and IOBC/WPRS Bull. 22 (1), 1999. Dr. ANNIE ENKEGAARD, Danish Institute of Agricultural Sciences, was appointed as new convenor to replace J.C. VAN LENTEREN. The next meeting in the WG, to be jointly organised by WPRS and NRS, will take place in BC, Canada in 2002.

WG “Protected Crops, Mediterranean Climate”
Next meeting
GT “Cultures Protegées, Climat Méditerranéen”
Prochaine réunion

As announced in the last issue of Profile, next meeting of the working group will be held in Antalya, Turkey between 24 and 28 of April 2000. Although deadline for submitting papers to be published in the IOBC/WPRS Bulletin is already closed, oral presentations and posters can be exceptionally accepted. Colleagues – both entomologists and plant pathologists, and both researchers and implementers- who are
interested in attending and contributing to the meeting, please contact urgently the convenor’s or local organizer’s addresses.

Ramon Albajes, *convener*
Universitat de Lleida, Centre UdL-IRTA,
Rovira Roure 177, 25006 Lleida, Spain
Fax: +34.973.238301, e-mail: Ramon.Albajes@irta.es

Erdal Sekeroglu, *local organizer*
Dept. of Plant Protection, Cukurova University, Agricultural Faculty
01330 Adana, Turkey
Fax: +90.322.3386369, e-mail: seker@pamuk.cu.edu.tr

IOBC/wprs WG “Plant Protection in Orchards” and WG “Plant Protection in Stone Fruit”

International Conference on Integrated Fruit Production
Lleida (Spain), October 22-26, 2000

The next biennial meeting of the Working group coincide with the International conference on Integrated Fruit Production that IOBC WGs Integrated Plant Protection in Orchards and Integrated Plant Protection in Stone Fruit organizes together with ISHS WG Integrated Fruit Production every 5 years. The meeting will be held in Lleida (E) from October 22nd to 26th 2000. Local organizer will be Jesus Avilla. Spain has always shown a great interest in stone fruits so we could compare results achieved and common problems.

It will be the occasion to discuss subjects of integrated production with a more complete participation and to verify the situation in the protection of the other fruit crops, too.

In Gödöllö we could enriched with researchers from East and North Europe and I hope that this attention will be maintained also for this new initiative. This will make possible to continue the discussion besides on peach also on subjects concerning plum and cherry that in the last meeting aroused lot of interest.

The expiry date to present papers has been fixed in January 31st 2000.
To have more information you can contact the local organizer, Dr Jesus Avilla or the convenor of the WG Stone Fruit Prof. Piero Cravedi – Istituto di Entomologia e Patologia vegetale – Facoltà di Agraria – Via Emilia Parmense, 84 – 29100 Piacenza – Italy fax: ++39-523-599235; e-mail: entomo@pc.unicatt.it

WG "Integrated Protection of Stored Products"

From August 22-24, 1999 the IOBC-Working Group "Integrated Protection of Stored Products" met at the Federal Biological Research Centre for Agriculture and Forestry (BBA) in Berlin (Dahlem), Germany. This meeting attracted scientists from 16 countries of which quite a number were from countries outside the WPRS like Turkey, Bangladesh, Ghana, Ethiopia, Camerun, Sri Lanka and Brasil. In part this is the result of the intensive international exchange of the Institute for Stored Product Protection, that hosts since many years students and scholars from periods of a few moths to several years. Dr. Cornel Adler is deputy director of this institute and convenor of the working group.

Compared to the last meeting that was held in Zurich, Switzerland, in August 1997 the number of participants nearly doubled from 36 to 64. Most of the participants were scientists from governmental or international institutes, universities, or organisations for technical cooperation, a number also works for private industry.

A total of 36 oral presentations were given on topics like traditional stored product protection in various tropical countries, the biology of pest organisms, biological control techniques, the use of phytochemicals and traps as well as physical and other control methods. Because many registrations came in after the official deadline, additional presentations were squeezed into the two-day program. This is why a tight time management had to be enforced. The coming meeting will be organised for at least 3-4 days in order to allow sufficient time for discussion and excursions.

Costs and the feasability of certain methods in comparison to conventional pest control were discussed. Of course the feasability of a technique depends also on the question wether this method is used in a food producing plant in an industrialised country or by a subsistance farmer who has little other choice than the use of local plants and
traditional techniques. The question what comprises integrated stored product protection in certain storage situations will be on the agenda of the next meeting, as well.

BBA-products like wine and tomatoes were offered during the opening reception. Large bunches of sunflowers added to the splendid atmosphere. All who had part in the organisation are thanked at this point, and of course all participants who helped to make this meeting a success.

A journalist of a Berlin newspaper was present during the first day and completed her impression of new trends in stored product protection in an interview. A tour through the laboratories of the Institute for Stored Product Protection and an excursion to a bakery using integrated pest management and working with the philosophy of the Demeter corporation were also part of the program. This bakery avoids problems with stored product pests under the advice of two former students of the Institute for Stored Product Protection.

Touristic highlights of the meeting were a river cruise through the new center of Berlin and a visit to the Reichstag. Good weather and the Berlin beergardens added to intensify international contacts long after the official program ended.

It was agreed that the next meeting should take place in 2001 in Portugal which will mean a welcome trip for Northern Europeans and less travel costs for Mediterranean colleagues.

C. Adler, convenor

Study Group „Integrated Control of Soil Pests”
Announcement of the Meeting of the SG „Pathology of Nematodes”

The next meeting of the Subgroup „Pathology of Nematodes” will take place the 2-5, November 2000 in Einsiedeln (Switzerland) near Zurich. The meeting arrangements will be coordinated by Dr. JUERG GRUNER, Swiss Federal Research Station, Waedenswil, Switzerland. An attempt will be made at the next meeting to attract nematologists working in other areas of integrated management that influence directly or indirectly biological management of plant parasitic nematodes. For more information on the program contact the convener of the subgroup, Dr. SIMON GOWEN, Reading University, UK.
IOBC/wprs WG
„Pesticides and Beneficial Organisms“
Report on the Meeting in Versailles, October 27-29, 1999

The last meeting was held in Versailles, France, at the „Institut National de la Recherche Agronomique“ (INRA), centre Versailles-Grignon, October 27-29, 1999. The number of participants was very high with 93 (from 13 countries) revealing once again the importance and actuality of the subject. There were more than 30 presentations dealing with side effects of pesticides. The participants discussed about test methods and results (laboratory, extended laboratory, semi-field, field) with numerous predator and parasitoid species, about assessment criteria, the evaluation of sublethal effects, e.g. on behaviour, statistical questions, especially with regard to LD50 determination etc.. The abstracts of the meeting are available at the homepage of the Federal Research Centre for Agriculture and Forestry (BBA):

http://www.bba.de (see English version, publications).

Besides the main meeting seven expert groups from the „Joint Initiative for validation of methods for regulatory testing of effects of pesticides on non-target arthropods“ of IOBC, EPPO and BART discussed the results and progress: Aleochara, Aphidius, Chrysoperla, Pardosa, Poecilus, predatory mites - field test Trichogramma. It is intended to publish the revised and validated methods in the year 2000 in an IOBC Bulletin.

With the participation of members of the IOBC Working Group a two days meeting was held before the beginning of the IOBC meeting which had as objective to work out guidance documents for semi-field and field trials as basis for the harmonization of guidelines within the EU directive 91/414. These documents are needed for the workshop on „European Standard Characteristics of Non-Target Regulatory Testing: Risk evaluation“, to be held at Wageningen, The Netherlands, from 21st to 23rd March 2000 under the participation of about 60 invited experts, including members of the IOBC WG „Pesticides and Beneficial Organisms“. This workshop has as its objective to put in concrete terms and to improve further criteria given in the EU directive 91/414 for non-target arthropods in the registration process of plant protection products.

The group emphasized again the importance of the Joint Pesticide Testing Programmes, which give most valuable informations for integrated pest management purposes. The 7th programme has been published in 1999 (BioControl 44, 99-117), the 8th is nearly finished and
the publicaion is being prepared. Unfortunately, there was a considerable delay in acquiring and distributing the test products of the 9th programme due to a number of unforeseen obstacles. In the meantime most testing members have received the substances and testing has started. In order to guarantee a faster coming out of the results in future, new testing members are needed. It was also emphasized, that it is most important to complete the sequential testing scheme as far as possible for all products, which have revealed to be harmful in the laboratory test. Also persistence test should be included more often.

The proceedings of the meeting will be published in an IOBC Bulletin.

The next meeting of the WG will be held in Spain, 16-20 October, 2000.

For further informations please contact:

DR. HEIDRUN VOGT
BBA, Institute for Plant Protection in Fruit Crops
Schwabenheimerstr. 101
D-69221 Dossenheim (Germany)
Tel +49 (0) 6221/8680530, Fax +49 (0) 6221/8680515
E-mail: Heidrun.Vogt@urz.uni-heidelberg.de

Study Group „Integrated Control of Soil Pests”

Report on the Meeting on
Tri-Trophic Interactions in the Rhizosphere,
Bad Honnef, November 3-5, 1999

The Study Group Meeting Tri-trophic interactions in the rhizosphere and root-health took place in the German Physikzentrum in Bad Honnef near Bonn between the 3rd and 5th of November 1999.

The meeting was designed to look at concepts, strategies and methodologies for working with soil-borne microbial antagonists as they relate to overall root health. The meeting was attended by 50 participants from 13 countries. They were successful in presenting papers targeted at generating discussion on a broad array of multi-disciplinary topics – the
ultimate goal of the meeting. Scientists and graduate students presented 40 papers on topics related to the importance of rhizosphere bacterial and fungal antagonists in pathogen and nematode control; the influence of unique mutualistic bacterial and fungal endophytes for root health management; the concepts of measuring and management of microbial communities for biocontrol purposes and commercial considerations required when setting research priorities. The meeting was attended by scientists working in a wide range of fields and from industry – the goal of the multi-disciplinary nature of the meeting from the start. The papers presented at the meeting will be published as an IOBC/wprs Bulletin.

The participants agreed that a future meeting was highly desirable. Plans were tentatively made to meet again in Bad Honnef in the year 2002. For more information on the next meeting please contact:

Prof. Dr. Richard A. Sikora
Soil Ecosystem Phytopathology and Nematology
Institut für Pflanzenkrankheiten der Universität Bonn
Nussallee 9, D-53115 Bonn
Tel +49 (0) 228-732439, Fax +49 (0) 228-732432
E-mail: rsikora@uni-bonn.de

Working Group „Insect Pathogens and Insect Parasitic Nematodes“

Report on the Meeting in Vienna, 22-26 March, 1999

The last meeting of the Working Group, entitled „Capturing the Potential of Biological Control“, was held in Vienna, Austria, 22-26 March 1999, together with COST 819 „Entomopathogenic Nematodes“, at the Hotel IBIS and at the Institut für Forstentomologie, Forstpathologie und Forstschutz, Universität für Bodenkultur, Wien. RUDOLF WEGENSTEINER was the leader of the local organizing team. A total of 161 participants from 32 different countries attended. The programme included welcome addresses, plenary talks, contributed papers (60) and posters (45) sessions, and several workshops. The proceedings are going to be published in the IOBC/WPRS Bulletin.

The convener of the Working Group, PETER SMITS, from the Instituut voor Planteziektenkundig Onderzoek, Binnenhaven 12, Postbus 9060,
6700 GW Wageningen (The Netherlands) retired and handed over to BERNARD PAPIEROK, Laboratoire des Bactéries et Champignons entomopathogènes, Institut Pasteur, 25, rue du Dr Roux, 75015 Paris (France).

Since the Vienna meeting, two symposia dedicated to biological control were held in Europe:
- „Biological Control Agents in Crop and Animal Protection“, August 24-28, 1999, University of Wales, Swansea (Wales),
- „Evaluating Indirect Ecological Effects of Biological Control“, IOBC Symposium, October 17-20, 1999, Agropolis, Montpellier (France).

On the occasion of the symposium in Swansea the „'99 Directory of Specialists Involved in the Development of Fungi as Biocontrol Agents“ (Eds : T.M. BUTT, M.S. GOETTEL and B. PAPIEROK) was published. This directory is partly based on the „Directory of Entomo-Mycologists / Répertoire des Entomo-Mycologistes“ established by B. PAPIEROK in November 1998 in the framework of the activities of the subgroup „Fungi“ within the Working Group. Extra copies of the ‘99 Directory are available on request from the convener.

The next meeting of the Working Group will be held in Greece in May 2001 where the local organizer will be MARIE ANAGNOU-VERONIKI, Benaki Phytopathological Institute, Delta Street, Kifissia (Greece).

Dr Bernard Papierok
Laboratoire des Bactéries et Champignons entomopathogènes
Institut Pasteur
25, rue du Dr. Roux
75015 Paris (France)
Tel +33-145688226, Fax +33-140613044
e-mail : papierok@pasteur.fr

IOBC/wprs Officers and their addresses

All officers are asked to send corrections and additions to this compilation of addresses to the editor of Profile and/or to the treasurer.

1 – Executive Committee

ESBJÆRG, Prof. Dr. Peter (President), Zoology Section, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C., Copenhagen (Denmark), Tel +45-35282686, Fax +45-35282670, e-mail: peter.esbjerg@ecol.kvl.dk
LAVADINHO, Dr. Antonio M.P. (Vice-President), Direcção-Geral de Protecção das Culturas, Quinta do Marquês, P-2780 Oeiras (Portugal), Tel +351-1-4412822, Fax +351-1-4420616, e-mail: dgpc@mail.telepac.pt

HUBER, Dr. Jürg (Vice-President), Institute for Biological Control, BBA, Heinrichstrasse 243, D-64287 Darmstadt (Germany), Tel +49-6151-407220, Fax +49-6151-407290, e-mail: j.huber.biocontrol.bba@t-online.de

ALABOUMETTE, Dr. Claude (General Secretary), INRA, Laboratoire de recherches sur la flore pathogène du sol, 17, rue Sully, BP 1540, F-21034 Dijon Cedex (France), Tel +33-3-80693041, Fax +33-3-80693226, e-mail: ala@dijon.inra.fr

GESSLER, Dr. Cesare (Treasurer), Swiss Federal Institute of Technology, Institute of Plant Sciences Phytomedicine-Pathology, Universitätsstrasse 2, CH-8092 ETH-Zürich (Switzerland), Tel +41-1-6323871, Fax +41-1-16321108, e-mail: cesare.gessler@ipw.agrl.ethz.ch

2 – Council

AFELLAH, Dr. H., I.N.R.A., Laboratoire de Zoologie, BP 578, Meknes (Maroc), Tel +212-5-512040

ALBAJES, Prof. Dr. R., Universida de Lleida, Centre UdI-IRTA, Rovira Roure, 177, E-25006 Lleida (Spain), Fax +34-73-238301, e-mail: albaijes@lleida.irta.es

BAAYEN, Dr. R.P., Research Institute for Plant Protection (IPO-DLO), Binnenhaven 5, P.O.Box 9060, NL-6700 GW Wageningen (The Netherlands), Tel +31-317-496830, Fax +31-317-421701, e-mail: r.p.baayen@pd.agro.nl

BATHON, Dr. Horst, Institute for Biological Control, BBA, Heinrichstrasse 243, D-64287 Darmstadt (Germany), Tel +49-6151-407-225, Fax +49-6151-407290, e-mail: h.bathon.biocontrol.bba@t-online.de

BIGLER, Dr. Franz, Swiss Federal Research Station for Agronomy, Reckenholzstrasse 191, CH-8046 Zürich (Switzerland), Tel +41-1-3777111, Fax +41-1-3777201, e-mail: franz.bigler@fal.admin.ch

BLÜMEL, Dr. S., Federal Office & Research Centre for Agriculture, Institute of Phytomedicine, Spargelfeldstrasse 191, P.O.Box 400, A-1126 Wien (Austria), Tel +43-1-73216-5154, Fax +43-1-73216-2205, e-mail: sbluemel@relay.bfl.gv.at

BUCHELOS, Dr. C.T., Agricultural University of Athens, Laboratory of Agricultural Zoology and Entomology, Jera Odos 75, Votanikos, G-11855 Athens (Greece), Tel +30-1-5294582, Fax +30-1-5294577, e-mail: ceaz2pag@auadec.aua.gr

KERRY, Dr. Brian, IACR Rothamsted, Entomology and Nematology Department, Harpenden, Hertfordshire AL5 2JQ (UK), Tel +44-1582-763133, e-mail: brian.kerry@bbsrc.ac.uk

MALAVOLTA, Dr. C., Servizio Sviluppo Sistema Agroalimentare, Viale Silvani, 6, I-40122 Bologna (Italy), Tel +39-51-284267, -284111, Fax +39-51-284524, e-mail: cmalavolta@regione.emilia-romagna.it

TIRRY, Prof. Dr. Luc, University of Gent, Laboratory of Agrozoology, Department of Crop Protection, Coupure Links 653, B-9000 Gent (Belgium), Tel +32-9-2646152, Fax +32-9-2646239, e-mail: luc.tirry@rug.ac.be
3 – Convenors

A\textsc{dler}, Dr. Cornel, Institute for Stored Product Protection, BBA, K\text{"o}nigin-Luise-Strasse 19, D-14195 Berlin (Germany), Tel +49-30-8304-2502, Fax +49-30-8304-2503, e-mail: c.adler@bba.de

A\textsc{fella}, Dr. H., I.N.R.A., Laboratoire de Zoologie, BP 578, Meknes (Maroc), Tel +212-5-512040

A\textsc{lba}jes, Prof. Dr. R., Universidade de Lleida, Centre UdI-IRTA, Rovira Roure, 177, E-25006 Lleida (Spain), Fax +34-73-238301, e-mail: albajes@lleida.irta.es

B\textsc{aur}, Dr. Hannes, Natural History Museum, Berstrasse 15, CH-3005 Bern (Switzerland), Fax +41-31-3507499, e-mail: hannes.baur@nmbe.unibe.ch

B\textsc{irch}, Dr. N., Scottish Crop Research Institute, Invergowri, Dundee DD2 5DA (Scotland, UK), Tel +44-1382-562731, Fax +44-1382-562426, e-mail: n.birch@scri.sari.ac.uk

B\textsc{oller}, Dr. Ernst F., Eidgen"ossische Forschungsanstalt Obst-, Wein- & Gartenbau, CH-8820 Wädenswil (Switzerland), Tel +41-1-7836330, Fax +41-1-7836434, e-mail: ernst.boller@mbox.faw.admin.ch

Cr\textsc{avedi}, Dr. Piero, Università Cattolica del Sacro Cuore, Istituto di Entomologia e Patologia Vegetale, Via Emilia Parmense 84, I-29100 Piacenza (Italy), Fax +39-523-599235, e-mail: entomo@pc.unicatt.it

D\textsc{elr}io, Dr. G., Università degli Studi, Istituto di Entomologia Agraria, Via Enrico de Nicola, I-07100 Sassari (Italy), e-mail: a.satta@ircoba.ss.cnr.it

E\textsc{lady}, Dr. Yigal, A.R.O. The Volcani Center, Department of Plant Pathology, Bet Dagan 50250 (Israel), Tel +972-3-9683580, Fax +972-3-9683688, e-mail: elady@netvision.net.il

E\textsc{nkea}ard, Dr. Annie, Danish Institute of Agricultural Sciences, Department of Crop Protection, Research Centre Flakkebjerg, DK-4200 Slagelse (Denmark), Tel +45-58113300, Fax +45-58113301, e-mail: annie.enkegaard@agrsci.dk

F\textsc{reu}ler, Dr. Jost A., Station Fédérale de Recherche en Production végétale de Changins, Case postale 254, CH-1260 Nyon (Switzerland), Tel +41-22-3634383, Fax +41-22-3634394, e-mail: jost.freuler@rac.admin.ch

L\textsc{ozz}ia, Dr. Carlo, Istituto die Entomologia Agraria, Università degli Studi di Milano, Via Celoria, I-20123 Milano (Italy), Tel +39-2-2369191, Fax +39-2-26680320, e-mail: lozcar@mailserver.unimi.it

P\textsc{apier}ok, Dr. Bernard, Institut Pasteur, 25, rue du Dr Roux, F-75015 Paris, Tel +33-1-45688226, Fax +33-1-40613044, e-mail: papierok@pasteur.fr

P\textsc{aul}, Prof. Dr. Volker H., Universität-GH Paderborn, Fachbereich Agrarwirtschaft, Lübecker Ring 2, D-59494 Soest (Germany), Tel +49-2921-378233, Fax +49-2921-378200, e-mail: paul@mailso.uni-paderborn.de

P\textsc{oeh}ling, Prof. Dr. Hans Michael, University of Hannover, Institute for Plant Pathology and Plant Protection, Herrenhäuser Strasse 2, D-30419 Hannover (Germany), Tel +49-511-7622641, Fax +49-511-7623015, e-mail: poehling@mbox.ipp.uni-hannover.de

P\textsc{oles}ny, Dr. Fritz, Federal Office & Research Centre for Agriculture (BFL), Institute of Phyto medicine, Spargelfeldstrasse 191, A-1220 Wien (Austria), Tel +43-1-73216-5177, Fax +43-1-73216-2205, e-mail: fpolesny@relay.
During spring 1999, high infestations of *Echinothrips americanus* were observed on *Impatiens* plants grown in glasshouses near Bologna, Emilia-Romagna, Italy. These plants had been imported from the Caribbean region. Infestations have also been observed on *Senecio cruentus* and beet grown under glasshouses. The authors discuss the possible spread of *E. americanus* in Italy and noted that studies will be carried out on biological control using the predator thrips (*Frankliniorthrips* spp.) and predator mites.

New IOBC/wprs Publications

New Brochure

Monitoring Populations of the Carrot Fly *Psila rosae*. VIII + 108 pp., 27 Figures, 28 Tables. Edited by: S. Finch, J. Freuler & R.H. Collier. Dijon (ISBN 92-9067-110-6), paperback SFR 25.00. This Brochure can be ordered with your membership-form which you will receive in the next few weeks. Distribution: Dr. Horst Bathon, Institut für biologischen Pflanzenschutz, Heinrichstr. 243, D-64287 Darmstadt (Germany), Fax 06151/407290, e-mail: h.bathon.biocontrol.bba@t-online.de.

Contents:

Introduction (R.H. Collier)

Monitoring practices established in different countries (J. Freuler, H. den Ouden, B. Jönsson, G. Taskdal & K. Wiech)

Fly behaviour and biology (J. Freuler, & R.H. Collier)

Trap location (J. Freuler, E. Brunel, R.H. Collier, C.P. Dufault, A. Ester & J.A. Schoneveld)

Various experiments (J. Freuler, C.P. Dufault & E. Städler)

Discussion (J. Freuler)

Appendix: List of traps used for experimental and monitoring purposes

Delay in delivery of the 1999 IOBC/wprs Bulletins

The Publication Commission apologizes for the delay in production and delivery of the 1999 IOBC/wprs Bulletins. For a long lasting sickness the Bulletins could not be printed in the regular time. Most of the following Bulletins have been dealt with in the last two months. Within the next two months we hope to issue all the Bulletins mentioned as “in print” or “in preparation” in the following part of Profile. The finished Bulletins will be mailed to the IOBC-Members in February.
Individual Members: Important!

Individual members receive the Bulletins produced by 5 Working or Study Groups of their choice. They may order additional Bulletins by the treasurer:

IOBC/wprs – The Treasurer
Dr. Cesare Gessler
Phytomedicine / Pathology
Universitätstr. 2
CH-8092 ETH Zürich (Switzerland)

The regular prices for the Bulletins are
– up to 100 pages: 10 EURO,
– up to 300 pages: 15 EURO,
> 300 pages: 30 EURO per copy.

The Publication Commission has issued the following Bulletins in 1999 (including the Contents of the Bulletins)

Vol. 22(1) 1999
Edited by: J.C. van Lenteren. ISBN 92-9067-105-X.

Integrated pest management in *Dendranthema indicum*.
Albert, R. ... 1

Integrated biological control of tomato crown and root rot by combination of chitosan with endophytic bacteria.
Benhamou, N. ... 5

Integrated control of the South American leaf miner *Liriomyza huidobrensis* on UK glasshouse lettuce and Chinese leafy salad crops.
Bennison, J., K. Maulden & G. Wardell ... 9

Percent parasitism and adult emergence of *E. formosa* from greenhouse whitefly pupae with multiple oviposition wounds.
Bjørnson, S. & D. Elliott .. 13

Life table characteristics of the predatory gall midge *Feltiella acarisuga*.
Brødsgaard, H.F., S. Jacobsen & A. Enkegaard .. 17

Protected cultivation and research on biological control pests in greenhouses in Brazil.
Bueno, V. H. P. ... 21

Biological control of the two-spotted spider mite, *Tetranychus urticae*, on hardy nursery stock.
Buxton, J. .. 25

Development of an integrated pest management program for fresh cut roses in US greenhouses.
Casey, C., B. Murphy, M. Parrella, J. MacDonald ... 29
Dicaphus hyalinipennis Burm. (Heteroptera: Miridae) a potential biological control agent for glasshouse pests in Hungary.

Ceglarska, E.B.. 33

Biological control in France in 1998 under greenhouses.

Courbet, S. & J.C. Maisonneuve .. 37

Parasitoid-induced mortality in the biological control of Bemisia tabaci on poinsettia.

Courcy Williams, M. de & E. Wright... 41

Croft P., J. Fenlon, R.J. Jacobson & J. Dubas... 45

Effects of fungicides on a Fusarium sp. biological control agent of Botrytis cinerea stem infections in the perspective of an integrated management of fungal diseases in greenhouse tomatoes.

Decognet, V. & P. Nicot.. 49

Protection of stem wounds against Botrytis cinerea in heated tomato greenhouses with a strain of Fusarium sp.

Decognet, V., Y. Trottin-Caudal, C. Fournier, J.M. Leyre, P. Nicot 53

Factors influencing the adoption of biological control technologies in floriculture under glass.

Dekeyzer, M.. 57

Use of insect growth regulators to reduce rates of Eretmocerus eremicus needed for biological control of whiteflies on poinsettia.

Driesche, R.G.van, M.S. Hoddle, S. Lyon & J.P. Sanderson 61

Present use and future potential for biological control of pests and diseases in Danish glasshouses.

Enkegaard, A., D. Funck Jensen, P. Folker-Hansen & J. Eilenberg 65

Laboratory rearing of the predatory gall midge Feltiella acarisuga.

Enkegaard, A., S. Jacobsen & H.F. Brodsgaard ... 69

Evaluation of pheromone concentrate for control of tomato pinworm in greenhouse tomatoes.

Ferguson, G.M., J.L. Shipp & D.W.A.Hunt... 73

Biological control of lettuce aphids with the entomopathogenic fungus Verticillium lecanii in greenhouses.

Fournier, V. & J. Brodeur ... 77

Biological control of Botrytis cinerea on tomato stem wounds with Ulocladium atrum.

Fruit, L. & P. Nicot... 81

Naturally occurring populations of Encarsia pergandiella (Hymenoptera: Aphelinidae) in tomato greenhouses.

Gabarra, R., J. Arnó, O. Alomar & R. Albajes .. 85

Evaluation of Cotesia marginiventris (Cresson)(Hymenoptera: Braconidae) for biological control of Trichoplusia ni (Hübner)(Lepidoptera: Noctuidae) in greenhouse vegetable crops in British Columbia.

Gillespie, D.R., R.R. McGregor & G. Opit ... 89

Control of watermelon insect pests by the use of multiple natural enemies.

Goh Hyun Gwan... 93

The effect of a neem-based insecticide on three important greenhouse pests.

Gripwall, E... 97

Heinz, K.M., S.P. Thompson & P.C. Krauter.. 101

Surveying for non-diapausing predatory bugs for biological control of thrips pests in greenhouses during winter.

An overview of natural enemy explorations and evaluations for *Bemisia* in the U.S.
Hoelmer, K.A. & A.A. Kirk.. 109

Alternative food sources for thrips predators on cucumber: also a delicacy for the western flower thrips *Frankliniella occidentalis*.
Hulshof, J. & I. Vänninen .. 113

Jacobson, R.I., P. Croft & J. Fenlon .. 117

Biological control of aphids in ornamentals: importance of plant quality.
Jansson, J. & B. Ekborn .. 121

Biological control of tomato pests in the Netherlands.
Klapwijk, J. N. .. 125

The role of *Macroluphus caliginosus* (Het.: Miridae) in controlling the two-spotted spider mite in greenhouse tomato under North-european conditions.
Koskula, H., I. Vänninen & I. Lindqvist 129

Control of two-spotted spider mite with *Amblyseius californicus* (Oud.) on croton.
Kropczyska, D., A. Pilko, A. Wittul & Al-Mabrouk Asshleb 133

Damage assessment of *Frankliniella occidentalis* (Pergande) (Thysanoptera) on strawberry under tunnels in Southern Italy.
Laudonia, S. & G. Viggiani .. 137

Biological control of thrips: how far are we?
Lenteren, J.C. van & A.J.M. Loomans 141

Management of whiteflies: new natural enemies and host-plant resistance.
Lenteren, J.C. van, E. Meekes, Yu Tong Qiu 145

Insectivorous birds for biological control of pests in glasshouses.
Linden, A. van der ... 149

Evaluating environmental effects of *Encarsia* species (Hymenoptera: Aphelinidae) introduced for whitefly control in Europe.
Loomans, A.J.M. & J.C. van Lenteren 153

Frankliniorthrips: perspectives for greenhouse pest control.
Loomans, A.J.M. & G. Vierbergen ... 157

Application of *Trichoderma harzianum* by using *Apis mellifera* as a vector for the control of grey mould of strawberry: first results.
Maccagnani, B., M. Mocioni, M.L. Gullino & E. Ladurner 161

Interest of *Chrysoptera lucasina* in biological control in greenhouse.
Maisonneuve, J.C. & C. Marrec ... 165

Some biological characteristics of *Amitus fuscipennis* MacGown & Nebeker (Hymenoptera: Platygasteridae), parasitoid of the greenhouse whitefly.
Manzano, M.R., J. C. van Lenteren, C. Cardona 169

Potential for the biological control of *Frankliniella occidentalis* (Pergande) with a nematode, *Thripinema nicklewoodi* (Siddiqi).
Mason, J.M. & K.M. Heinz .. 173

Biological pest control in cucumbers in the Netherlands.
Mulder, S., H. Hoogerbrugge, K. Altena & K. Bolckmans 177

Interaction between fungal pathogens and natural enemies: Implication for combined biocontrol of greenhouse pests.
Murphy, B. D. von Damm-Kattari & M. Parrella 181

Diglyphus isaea (Walker) and *Macrolopthus caliginosus* Wagner for biological control of *Liriomyza bryoniae* (Kaltenbach) in tomato.
Nedstam, B. & M. Johansson-Kron ... 185

Integration of biological and chemical control in case of Japan.
Ogata, Yoko .. 189

Implementation and development of IPM in greenhouse crops in Austria.
Pleininger, S. & S. Blümel .. 193
Preliminary study on interplant movement and host location rate of five parasitoids of *Bemisia argentifolii* in small greenhouse.

Qiu, Yu Tong, Y.C. Drost, O. da Silva da Graca & J.C. van Lenteren..................... 197

Biological control of *Thrips tabaci* on protected leek seed crops.

Rat-Morris, E. ... 201

Development of an IPM system in soilless culture by using slow sand filtration and a biocontrol fungus, *Pythium oligandrum*.

Rey, P., K. Picard, F. Déniel, N. Benhamou & Y. Tirilly 205

Pollen improves thrips control with predatory mites.

Rijn, C.J. van, Y.M. van Houten & M.W. Sabelis ... 209

Macrophosphus caliginosus Wagner (Heteroptera: Miridae): A predator causing damage to UK tomatoes.

Sampson, C. & R.J. Jacobson .. 213

Biological Control of Sweet Pepper Pests in the Netherlands.

Schelt, J. van .. 217

Biological control of the leafminer *Liriomyza trifolii* in Chrysanthemums: Implications for intraguild predation between *Diglyphus begini* and *Steinernema carpocapsae*.

Sher, R.B. & M.P. Parrella .. 221

Economic injury levels for western flower thrips on greenhouse cucumber.

Shipp, J.L., K. Wang & M.R. Binns .. 225

Biological control in ornamentals: An individual-based modelling approach.

Skirvin, D.. 229

The effect of plant species on the biology of *Tetranychus urticae* and *Phytoseiulus persimilis*.

Skirvin, D. & M. de Courcy Williams .. 233

Steinberg, S., H. Cain & J. Kaminski.. 237

A simplified rearing method for *Stratiolaelaps (Hypoaspis) miles* (Acari: Laelapidae).

Steiner, M., S. Goodwin & T. Wellham ... 241

Influence of humidity on the functional response of larvae of the gall midge (*Feltiella acarisuga*) feeding on spider mite eggs.

Svendsen, M.S., A. Enkegaard & H.F. Bredsgaard... 243

Experiences with insect exclusion screening of greenhouse vents in Ontario, Canada.

Teerling, C.R. & G. Murphy .. 247

The use of plant growth promoting rhizobacteria (PGPR) to decrease the susceptibility of cucumber to spider mites.

Tomczyk, A. ... 251

Life history parameters of *Aphidius colemani* (Hym.: Aphidiidae) on sweet pepper in different temperature regimes.

Toussidou, M, M. de Courcy Williams & S. Leather .. 255

Tomate sous abri en France: méthodes et perspectives de lutte contre la pourriture grise due à *Botrytis cinerea*.

Trottin-Caudal, Y., Ph. Nicot & V. Decognet .. 259

Integrated control of the green peach aphid *Myzus persicae* in sweet peppers using the nicotinepy insecticide Imidacloprid.

Veire, M. van de, I. Vantornhout & L. Tirry .. 263

Development of biological control of *Trialeurodes vaporariorum* with *Encarsia formosa* and *Amitus fuscipennis* on greenhouse tomato in Colombia.

Vis, R. De, L.E. Fuentes & J.C. van Lenteren... 267

Typical Releasing Program (TRP) in biological and chemical control in greenhouse.

Wada, Tetsuo ... 271
Effect of different prey amounts on the population development of the phytoseiid mites *Phytoseiulus persimilis* and *Neoseiulus californicus* in a single- and in a two-species system on detached rose leaves.
Walzer, A. & S. Blümel ... 275

Evaluating the costs of biological pest control in protected crops.
Wardlow, L.R., D.J. Fricker & M. Holmes ... 279

Developing a strategy for the control of *Spodoptera littoralis* with entomopathogenic nematodes in greenhouses.
Williams, E., K. Walters & N. Dennis .. 283

A bioassay technique to determine the functional response of different predators of *Frankliniella occidentalis* in ornamentals.
Wright, E. & M. de Courcy Williams ... 287

Recent advances in the study of biocontrol with indigenous natural enemies in Japan.
Yano, E. .. 291

One paper presented during the meeting in Brest is published in STING 19: 27-30, 1999, because this article arrived by the editor when printing of the Bulletin just had started:
Present Status of Integrated Pest Management in Greenhouse Vegetable Production in Hungary
Z. Ilovai, Cs. Budai, E. B. Ceglarska, E. Dormanns- Simon & I. Kajati

Vol. 22(2) 1999

Foreword:
J. Waage & A. Kirk ... 1

S.E. Attignon & R. Peveling .. 2

Mass releases of *Trichogramma brassicae* against the European Corn Borer in Switzerland: do they pose a risk to non-target butterflies?
D. Babendreier, S. Kuske & F. Bigler .. 3

Evaluation of non-target effects of native and introduced entomopathogenic nematodes.
M.E. Barbercheck & L.C. Millar ... 4

Potential for impact of *Microctonus* spp. (Hymenoptera: Braconidae) outside the target host environment.

Predicting trophic interactions.
N.J. Bax ... 6

Effect of *Harmonia axyridis* (Coleoptera: Coccinellidae) invasion on the aphidophagous coccinellid guild on apple in West Virginia, USA.
M.W. Brown .. 7

Assessing indirect effects of plant pathogens for biological control of weeds.
W.L. Bruckart, E. Bruzzese & S.F. Shamoun ... 8
Introduction of Trichopoda giacomelli (Diptera: Tachinidae) as a biological control agent for Nezara viridula (Hemiptera: Pentatomidae) and its potential for impact on the non-target hosts Plautia affinis, Glaucias amyoti and Alciphron glaucus (Hemiptera: Pentatomidae).

M. Coombs...9

Introducing European parasitoids of tortricid grape berry moths into North America: evaluating the potential for a program in the U.S.

D. Coutinot, S. Katti, M. Saunders, K. Hoelmer & M. Martinez 10

Ecological aspects of using micro-organisms to control plant diseases, and possible non-target effects.

G. Défago, B. Duffy, C. Hase, F. Mascher & Y. Moenne-Loccoz 11

Expanding and documenting ecological research in classical biological control programs

E.S. Delfosse ... 12

Retrospective case studies to test a protocol for predicting host range of parasitoids introduced for biological control

E.A.B. De Nardo & K.R. Hopper .. 13

Methodologies for studies of interactions between hosts and pathogens in the insect pathogenic fungal genera Entomophthora and Strongwellsea

J. Eilenberg, A. Bruun Jensen & L. Thomsen ... 14

Indigenous and exotic parasitoids: competitive displacement or complementary action?

G. Fabres .. 15

The comparison of pests and natural enemies in their areas of origin and introduction: the scope and value of extensive ecological studies in the broom biocontrol programme.

S.V. Fowler, J. Memmott, Q. Paynter, A. Sheppard & P. Syrett 16

Effect of host plant on Brassicaceae specialist/generalist aphids on their natural predator, Adalia bipunctata L. (Coleoptera: Coccinellidae).

F. Francis, E. Haubruge, P. Hastir & C. Gaspar ... 17

The occurrence of Rhinocyllus conicus on native North American Cirsium species: was it predictable from pre-release studies?

A. Gassmann ... 18

Experience and evaluation of non-target effects of pathogens used for management of arthropods.

M.S. Goettel & A.E. Hajek .. 19

Assessment of potential adverse effects to non-target trees from the use of Chondrostereum purpureum for vegetation management.

L. Gosselin, L. Bernier, J.A. Fortin, F. Miron & N. Major ... 20

Ecological aspects of the survival in soil of spray released Bacillus thuringiensis subsp. kurstaki.

B.M. Hansen & N.B. Hendriksen... 21

Methodologies for assessing the overwintering potential of non-native arthropods.

A.J. Hart, A.G. Tullett & J.S. Bale... 22

Non-target impact of Rhinocyllus conicus (Froelich) on thistles native to California and their associated insect fauna.

C. Headrick & K. Oishi ... 23

Why introduce aphidophagous ladybirds?

J.L. Hemptinne & A.F.G. Dixon ... 24

Evaluation of non-target effects: comparative biology and host range of two root herbivores for the biological control of scentless chamomile.

H.L. Hinz & H. Müller-Schärer ... 25

Minimizing the environmental risks of natural enemy introductions for biological control of greenhouse pests: use of criteria for determining the non-establishment of exotic
arthropod predators and parasitoids in the field.
Y. Hirose ... 26

The (theoretical) evolution of agent-target-non-target interactions in biological control.
M. Hochberg .. 27

Predicting and assessing non-target impacts of parasitic Hymenoptera attacking Bemisia
(Homoptera: Aleyrodidae) in the southwestern USA.
K.A. Hoelmer & M. Rose .. 28

Understanding the prospects for biological control of alien invasive pines (Pinus species)
in Southern Africa through ecological studies and experimentation in their native
habitats in Europe.
J.H. Hoffmann, A. Roques & V.C. Moran .. 29

Indirect effects in the biological control of arthropods with arthropods.
H.M.T. Hokkanen .. 30

Non-target effects in biological control - community interactions and the contribution of
etiological modelling.
R.D. Holt ... 31

The off-target impact of biocontrol on a native Hawaiian stink bug.
T. Johnson, P. Follett, V. Jones & A. Taylor 32

Development of host specificity tests for predators as biological control agents: an
example for Clistostethus arcatius (Rossi) (Coleoptera: Coccinellidae) on Bemisia
tabaci Gannadius complex B-biotype.
A. Kirk & H. Thistlewood .. 33

Natural host specificity assessment of European parasitoids for classical biological
control of the cabbage seedpod weevil, Ceutorhynchus assimilis, in North America:
evaluation of potential non-target risks.
U. Kuhlmann, B. Klander & P.G. Mason ... 34

Evaluation of the safety of biological control agents for introduced marine pests.
A. Kuris & K.D. Lafferty ... 35

Introduction of an exotic egg parasitoid - a potential risk for a native tachinid fly?

The outcome of the introduction of a pathogen for the biological control of pest
gasshoppers (Orthoptera: Acridoidea) in Argentina.
C.E. Lange & M.M. Cigliano .. 37

Selecting hosts resistant to parasitism as a potential side-effect of biological control: the
case of Aphis gossypii Glover.
L. Lapchin ... 38

Evaluation of impact in weed biological control.
W.M. Lonsdale & D.T. Briese ... 39

Do exotic parasitoids introduced for whitefly control endanger our environment?
A. Loomans & J. Van Lenteren .. 40

Magnitude and mechanisms underlying indirect non-target effects of Rhinocyllus conicus
on native inflorescence insects.
S.M. Louda & A.E. Arnett ... 41

Transient impacts in biocontrol: factors determining minimum non-target densities.
L.D. Lynch, A.R. Ives, J. Waage & M.B. Thomas 42

Practical use of systematic and ecological analyses to determine non-target species for
host-range testing of entomophagous biological control agents.
P.G. Mason, R.G. Foottit & U. Kuhlmann .. 43

Establishment and impact of three biological control agents on purple loosestrife,
Lythrum salicaria L. (Lythraceae), and non-target plants in Virginia.
T.J. McAvoy, L.T. Kok & W.T. Mays ... 44
Predicting non-target effects of weed biocontrol agents: lessons from a case study of *Lema cyanella* and thistles (*Cirsium spp.*).
A.S. McClay ... 45

How reliable is host specificity as a measure of safety in weed biocontrol?
P.B. McEvoy ... 46

Field experiments and surveys in the weeds' native range to solve contradictory results of quarantine host-specificity studies: *Solanum* weeds case study.

When insect biocontrol interferes with weed biocontrol: selection pressures leading to host shift in a parasitoid of Mediterranean fruit fly.
R.H. Messing & J.J. Duan .. 48

Non-target impact of exotic natural enemies released on *Maconellicoccus hirsutus* Green in St. Kitts, West Indies.
D.E. Meyerdirk & R.W. Warkentin .. 49

Biological control in Africa and its possible effect on biodiversity.
P. Neuenschwander & R. Markham ... 50

Insect herbivory may not reduce growth of *Centaurea maculosa* nor reduce its competitive effects on neighbors.
B.A. Newingham & R.M. Callaway ... 51

The importance of prior experience and population source in the determination of host range.
R.M. Newman, G. Cronin, S.L. Solarz & D.M. Lodge .. 52

Evaluation of ecological risks by using exotic polyphagous predators for biological control. Laboratory assessment of inter- and intra-specific predation between the exotic *Harmonia axyridis* (Pallas) and the native species *Propylaea 14-punctata* (L) and *Adonia variegata* (Goeze) (Coleoptera: Coccinellidae).
G. Nicoli, G. Burgio, F. Santi & R. Fiacconi .. 53

Habitat analysis of *Euphorbia* species and associated flea beetles in the *Aphthona* complex from Europe: contributions of ecology studies to biological control.
R.M. Nowierski, Z. Zeng, D. Schroeder, A. Gassmann & M. Cristofaro 54

Using decision analysis to assess risk of marine introductions associated with transport vectors.
J. Pederson ... 55

Non-target use of native plants by introduced biological control agents of weeds; predictable and avoidable risks.
R.W. Pemberton ... 56

Impact of indigenous and exotic parasitoids as mortality factors of *Phyllocnistis citrella* in south Florida, USA.
LE. Peña, R. Duncan & H. Browning ... 57

Integrating pheromone-based and biological controls of the Douglas-fir beetle (*Dendroctonus pseudotsugae*).
D.W. Ross ... 58

Direct and indirect effects of *Trichopoda pennipes*, adult parasitoid of *Nezara viridula*, ten years after its accidental introduction in Italy from the New World (Diptera: Tachinidae; Heteroptera: Pentatomidae).
G. Salerno, S. Colazza & F. Bin ... 59

Host range determination of herbivore insects for classical biological control of weeds: ecological approaches to evaluate the risk to non-target plants.
M. Schwarzländer & R. DeClerck-Floate ... 60

Incorporating biological control into ecologically-based weed management.
R. Sheley ... 61
Indirect interactions, food web vignettes, and unconventional biological control.
D.R. Strong .. 62

Non-target impacts of insects introduced for biological control of weeds: the New Zealand experience.
P. Syrett, S.V. Fowler, J.S. Dugdale, J.J. Sheat & L.A. Smith ... 63

Acarological case-study: predator-herbivore-plant interactions.
I. Szabo Kornlovszky, J. Litkei & G. Jenser .. 64

Evaluation of ecological risk by using exotic polyphagous predators for biological control - laboratory assessment of inter- and intra-specific predation between Orius insidiosus (Say) and Orius laevigatus (Fieber).
M.G. Tommasini & G. Nicoli ... 65

Presence and impact of introduced and native parasitoids on Phyllocnistis citrella Stainton in Greece.
A. Tsagarakis, A. Kalaitzaki, D. Lykouressis, S. Michelakis & V. Alexandrakis 66

Is host-specificity of biocontrol agents likely to evolve once released?
R.D. Van Klinken ... 67

Evaluating environmental effects of Encarsia species (Homoptera: Aphelinidae) for whitefly control in Europe.
J. Van Lenteren & A. Loomans ... 68

Effect of the entomopathogenic fungus Metarhizium anisopliae on non-target ground and rove beetles (Carabidae and Staphylinidae) in a lucerne field.
S. Vestergaard & J. Eilenberg ... 69

Indirect ecological effects in biological control - the practice of theory.
J. Waage ... 70

Ecological and genetic interaction between an introduced and indigenous torymid parasitoids in biological control of the chestnut gall wasp, in central Japan.
K. Yara, M. Muraji & E. Yano ... 71

Risks in biological weed control: the South African experience.
H.G. Zimmermann .. 72

Author Index .. 73

Species Index .. 75

Taxonomic index .. 78

Vol. 22(3) 1999

Main aspects of cork oak decline in Sardinia.
A. Franceschini, P. Corda, L. Maddau, C. Sechi & P. Angelo Ruiu .. 1

Observations on Diplodia mutila, cork oak pathogen in Sardinia.
A. Franceschini, P. Corda, L. Maddau & F. Marras ... 5

Contribution to the ultrastructural study of Diplodia mutila (Fri.) Mont. implicated in the decline process of the cork oak Quercus suber L. in Morocco.
N. El Badri & M. Abadie .. 13

Screening of different cork oak origins to the pathogen Diplodia mutila.
M. Bakry, H. Sbay, Mohamed Abourouh & Badr Satrani .. 19

Mycocflora associated with cork oak (Quercus suber L.) in Portugal.
M.N. Santos, M.H. Machado, M.H. Bragança, H. Ramos, E. de Sousa & I. Tomaz ... 25

Cork oak acorns and their pathogenous fungi: attempts of conservation and control.
A. Khaldi, M.L. Ben Jamaâ & B. Stiti .. 29
Biotic factors inducing tree decline in Moroccan cork oak forests.
M. Bakry, S. El Antry, B. Satrani & W. Oubrou .. 37

Damage importance and species identification of the cockchafer grubs attacking cork
oak seedlings in the Mamora forest (Morocco).
S. Rachdi & M. Haddan .. 41

Spatio-temporal distribution of Platypus cylindrus F. (Coleoptera: Platypodidae) attacks
in cork oak stands in Portugal.
E.M. R. De Sousa & D. Debouzie .. 47

Biology and damage of Cerambyx cerdo mirbecki Lucas (Coleoptera, Cerambycidae) in
the Mamora cork oak forest (Morocco).
S. El Antry ... 5 9

Defoliator insects of Quercus callyprinos Webb. and Quercus infectoria Oliv. in Lebanon.
G. Démolin & N. Nemer ... 65

Gypsy moth gradations in Europe and North Africa.
C. Villemant & A. Fraval ... 71

Ecological statute of the gypsy moth, Lymantria dispar (Lep. Lymantriidae) in Atlantic
Moroccan cork oak forests.
H. Ramz ... 81

Gypsy moth development on foliage of several oaks in Sardinia.
P. Luciano, A. Lentini, C. Dettori, V. Solinas & G. S. Passino................................. 89

Suitability of two oak species, Quercus petraea and Q. cerris, for development and
growth of gypsy moth larvae.
A. Schopf, G. Hoch, A. Klaus & C. Schafellner ... 95

The diapause of gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae).
N. Benhsain & Z. Atay-Kadiiri .. 101

Citrullus colocynthis (L.) extract effect on gypsy moth, Lymantria dispar (L.) (Lepidoptera:
Lymantriidae).
N. Benhsain & Z. Atay-Kadiiri .. 107

Effects of Bacillus thuringiensis and defoliation by gypsy moth on lepidopterous fauna in
cork-oak forests.
P. Luciano & A. Lentini ... 115

The gypsy moth and its natural enemies at different population densities in the oak
forests of Eastern Austria.
G. Hoch, T. Gschwantner & A. Schopf ... 121

Population density and parasitism rate of Lymantria dispar L. (Lepidoptera: Lymantriidae)
during a five-years survey in a Sardinian cork oak forest.
A. Cerboneschi .. 129

In vitro rearing of Exorista larvarum (L.) and Brachymeria intermedia (Nees), parasitoids
of cork oak defoliators.
R. Farneti & M. L. Dindo .. 137

Possibilities for classical biological control against forest pests through collaborative
programs between Europe and North Africa.
M. Kenis .. 145

Biodiversity of Ichneumonoidae (Hymenoptera) in the green oak forest of Fango
(Corsica).
M-C. Andreï-Ruiz & C. Villemant .. 151

The spiders of the Moroccan cork oak forests.
S. Benhalima, C. Villemant & M. Mouna .. 157

Refuse impact of the cork oak forest at Ben Slimane (Morocco).
F. Agtay ... 163

Impact of decline factors, socio-economic environment and forest planning on Moroccan
oak forests.
M. Bendaanoun ... 167
Protection strategy of the Mamora cork oak forest.
M. El Yousfi... 175

Sylvo-pastoral planning: a device for the sustainable development of the forest resources.
M. Naggar ... 181

Patrimonial interest of temporary pools in the cork oak forests: the left and right banks of the oued Cherrat.
D. Titolet & L. Rhazi.. 189

Conclusions and recommendations ... 195

Vol. 22(4) 1999

Foreword 2nd edition .. 5
Foreword 1st edition 1993 ... 6
Introduction 11
The IOBC concept of Integrated Production .. 13
Definition of Integrated Production (Short version) ... 14
Objectives and principals of Integrated Production.. 15
Technical Guideline I: General IOBC requirements for organisations and their members practising Integrated Production according to IOBC standards
Appendix 1: Possible structures of IP-Guidelines.. 20
Appendix 2: Minimum requirements for the inspection and evaluation of farms operating according to IOBC IP-standards .. 22
Appendix 3: List of sanctions .. 26

Technical Guideline II: General IOBC Guidelines valid for all farms participating in IOBC endorsed IP-programs
General economic aspects .. 27
Soil ... 28
Biological diversity and landscape .. 29
Nutrient management and fertilisers ... 30
Irrigation ... 31
Plant protection .. 32
Product quality ... 33
Animal production .. 33
Appendix 4: Integrated Plant Protection in the context of sustainable agriculture... 34

Vol. 22(5) 1999

Simulating sampling strategies for aphid and caterpillar pests of brassica crops.
Collier, R.H. & A.Mead ... 1

A new approach to characterising within-field pest distributions using mealy cabbage aphid (Brevicoryne brassicae) on Brussels sprouts as an example.
Use of a geographical information system (GIS) for forecasting the activities of carrot fly and cabbage root fly.
Tiiilikka, K., & H. Ojanen
15

Strategies for the control of aphid pests of lettuce.
Collier, R.H., G.M. Tatchell, P.R. Ellis & W.E Parker
25

Consideration of “Integrated Production” guidelines for vegetable crops.
Esbjerg, P.
37

Managing pest Lepidoptera on processing vegetable crops in the Midwestern United States.
Flood, B.R., & J.D. Wyman
41

Characteristics of IPM in vegetable crops in Hungary.
Ilovai, Z.
51

Aspects of crop protection in the integrated production of field vegetable crops in Sweden.
Jönsson, B.
53

Investigation on the supervised control of Thrips tabaci in leek and onion crops.
Richter, E., M. Hommes & J-H. Krauthausen
61

Encouraging biological control as a component of pest and resistance management in cabbage in the Midwestern United States.
Wyman, J., B. Flood, S. Chapman & C. Granadino
73

Is the initial colonisation of leek by Thrips tabaci affected by intercropping with clover?
den Belder, E. & J. Elderson
79

Possible reasons for the decline in carrot fly (Psila rosae (F.)) infestations in western Europe.
Ellis, P.R. & A. Ester
83

Monitoring carrot fly populations, and the effect of low soil moisture on the mortality of eggs and first-instar larvae.
Vincent, J. & S. Finch
89

Predatory species of the genus Orius recorded in fields of vegetable crops in Greece.
Barbetaki, A., D. Lykouressis & D. Perdikis
97

Variation in the rate of parasitism of Delia radicum in the west of France.
Brunel, E., S. Fournet & X. Langlet
103

Is the parasitoid staphylinid beetle Aleochara bilineata an effective predator of the egg stage of its natural host, the cabbage root fly?
Finch, S., M.S. Elliott & M.T. Torrance
109

A hypothesis to explain the competition between two staphylinid parasitoids of Delia radicum.
Fournet, S. & E. Brunel
113

The effect of undersowing brassica crops with clover on host finding by Trybliographa rapae and Aleochara bilineata, two parasitoids of the cabbage root fly, Delia radicum.
Hartfield, C.M., M. Nethercleft & S. Finch
117

Time for development of Trybliographa rapae, an endoparasitoid of the cabbage root fly Delia radicum, at four constant temperatures.
Kacem, N., N. Neveu & J.P. Nénon
125

Effect of entomopathogenic nematodes from the genera Steinernema and Heterorhabditis on caterpillars of two pest insect species (Pieris brassicae L. and Mamestra brassicae L.) that damage cruciferous vegetable crops.
127

Development and mortality of the nymphal stages of the predatory bug Macrolophus pygmaeus, when maintained at different temperatures and on different host plants.
Perdikis, D. Ch. & D.P. Lykouressis
137
Preliminary observations on *Diadegma fenestralis* a parasitoid of the diamond-back moth, *Plutella maculipennis*.
Wiech, K. & B. Jankowska .. 145

The influence of undersown clover and different fertiliser levels on infestations of the onion thrips in leek crops.
den Belder, E. & J. Elderson .. 151

Host-plant finding by insects – “appropriate / inappropriate landings” a mechanism based on the behaviour of pest insects of cruciferous crops.
Finch, S. & M. Kienegger ... 157

The impact of different intercropping systems on herbivorous pest insects in plots of white cabbage.
Lehmhus, J., M. Hommes & S. Vidal ... 163

Host-plant finding and colonisation by *Thrips tabaci* in monocropped leeks and in leeks undersown with clover.
Theunissen J. & G. Schelling .. 171

Thrips damage or yield reduction in undersown leek: replacing one evil by another?
Weber, A., M. Hommes & S. Vidal ... 181

Controlling the onion fly (*Delia antiqua* (Meig.)) with insecticides applied to leek seed.
Ester, A. ... 189

Effectiveness of insecticide applied to carrot foliage in killing carrot fly.
Johansen, T.J., S. Finch & A. Jukes .. 197

Biology and control of the leek mining fly, *Napomyza gymnostaoma*.
Kahrer, A. .. 205

Neem extracts for controlling caterpillars attacking cabbage.
Meadow, R. & R. Seljåsen .. 213

Using imidacloprid as part of an integrated system for controlling the black bean aphid *Aphis fabae* Scop.
Narkiewicz-Jodko, J. & M. Rogowska 219

Pests of winter radish (*Raphanus sativus* L.) and their control.
Nawrocka, B. .. 223

The occurrence and control of *Pemphigus phenax*, an aphid that infests the roots of carrots.
Szwejda, J.H. .. 229

Monitoring and control of *Thrips tabaci* Lind. with furathiocarb in leek fields.
Van de Steene, F. .. 235

Vol. 22(6)1999

Systems approaches and ecological modernisation of horticultural production.
R. Rabbinge, W.A.H. Rossing & P.S. Wagenmakers 19

Directions in modelling fruit growth and orchard processes.
T.A. Atkins .. 31

Modelling fruit set, fruit growth and dry matter partitioning.
L.F.M. Marcelis & E. Heuvelink .. 39

A simulation peach growth model at the shoot bearing fruit level: fruit growth variability and reserve kinetics.
M. Ben Mimoun, F. Lescourret, M. Génard & R. Habib 51

Simulation of the effect of fruit thinning on peach quality.
M. Génard, F. Lescourret & M. Ben Mimoun 61
Progress in the development in ‘CITROS’ – a dynamic model of citrus productivity.
A. Bustan, E.E. Goldschmidt & Y. Erner .. 69

Examination of ‘hierarchical’ and ‘proportional’ dry matter partitioning models with potted citrus trees.
A. Bustan & E.E. Goldschmidt ... 81

Modifying PEACH to model the vegetative and reproductive growth of almonds.
G. Esparza, T.M. DeJong & Y.L. Grossmann ... 91

Model of fruit growth based on biophysical description of main contributing processes.
S. Fishman & M. Génard .. 99

Using the relation between growing degree hours and harvest date to estimate run-times for PEACH: a tree growth and yield simulation model.
M. Ben Mimoun & T.M. DeJong ... 107

Validating an apple dry matter production model with whole canopy gas exchange measurements in the field.

Modelling chemical thinning in peach.
E. Szafran, Z. Kizner, I. David & S. Zilkah .. 123

Modelled seasonal pattern of nitrogen requirements of mature, cropping peach trees (Prunus persica (L.) Batsch).
J. Rufat & T.M. DeJong ... 129

Analysis and modelling of apple fruit growth.
S. Orlandini, M. Moriondo, P. Capellini & P. Ferrari ... 137

Quality of modelling in fruit research and orchard management: an introduction to the workshop.
W.A.H. Rossing, W. van der Werf & C. Leeuwi... 147

Quality of modelling in fruit research and orchard management: issues for discussion.
W. van der Werf, C. Leeuwi & W.A.H. Rossing.. 151

‘IRRY’: a decision support system for the water supply in orchards.
A.J. Boshuizen & M.P. van der Maas.. 161

Recommendations for an efficient plant protection programme in Swiss apple orchards: current state and future development of a decision support system.
B. Graf, H. Höhn, W. Siegfried, H.U. Höpli & E. Holliger................................. 167

A decision support system for economic and ecological calculations for fruit crops.
M.J. Groot ... 171

Computer-methodology for designing pest sampling and monitoring programs.
W. van der Werf, J.P. Nyrop, M.R. Binns & J. Kovach...................................... 175

Vinemild: an application-oriented model of Plasmopara viticola epidemics on Vitis vinifera.
Ph. Blaise, R. Dietrich & C. Gessler... 187

‘PEACH’: peach crop yield and tree growth simulation model for research and education.
T.M. DeJong .. 193

Modelling mite dynamics on apple trees in eastern North America.
J.M. Hardman, W. van der Werf & J.P. Nyrop.. 201

Modelling peach response to chemical thinning.
E. Szafran, S. Zilkah & Z. Kizner ... 211

Quality of modelling in fruit research and orchard management: report of a discussion.
W.A.H. Rossing, C. Leeuwis & W. van der Werf.. 213

‘SIMTECK’ a simulation model for technical operations in Kiwifruit orchard management.
R. Habib, D. Agostini & F. Lescourret ... 229

A pollination and fertilisation model for multi-seeded fruit and its application to kiwifruit.
F. Lescourret, B.E. Vaissière & J. Chadoeuf .. 237

‘WINTREE’: a computer program for calculating chill and anthesis units used in modelling fruit tree phenology.
A new demand function for grapevine fruits in vinemild.
Ph. Blaise, R. Dietrich & M. Jermini ... 253
A simulation study with a Dutch and a Canadian strain of the parasitoid Aphelinus mali
(Hald.) for control of woolly apple aphid Eriosoma lanigerum (Hausmann) in the
Netherlands.
P.J.M. Mols & J.M. Boers .. 261
3D digitizing based on tree topology: application to study the variability of apple quality
within the canopy.
E. Costes, H. Sinoquet, C. Godin & J.J. Kelner ... 271
A statistical approach for analyzing sequences in fruit tree architecture.
Y. Guédon & E. Costes ... 281
Computational model for direct solar irradiation of canopy in dense orchard.
E.E. Gussakovsky & Y. Shahak ... 289
Modelling light interception on the basis of sunfleck measurements.
P.S. Wagenmakers & M. Tazelaar ... 297

Vol. 22(8) 1999
Guidelines for Integrated Production of Grapes. IOBC Technical
Guidelines III, 2nd edition. 75 pp., Edited by: C. Malavolta & E.F.
Boller. ISBN 92-9067-113-0.
Preface of second edition ... 3
Preface of first edition 1996 .. 4
Préface de la seconde édition .. 5
Guidelines for Integrated Production of grapes.
IOBC Technical Guideline III ... 7
Directive pour la production intégrée des raisins.
Directive technique III OILB ... 17
Richtlinie für die Integrierte Produktion von Trauben.
Technische OILB Richtlinie III .. 27
Direttive per la produzione integrata di uva.
Direttiva Tecnica III OILB .. 37
Directrices para la producción integrada de uva.
Directriz Técnica III OILB .. 47
Directivas para a produção integrada de uvas.
Linha Orientadora III OILB .. 57
[Guidelines for Integrated Production of grapes. (Greek)] 67

Bulletins just in print or in preparation

Vol. 22(7) 1999
Working Group “Integrated Plant Protection in Orchards. Pome
Fruits”. Proceedings of the Workshop at Einsiedeln (Switzerland),
Vol. 22(9) 1999

Vol. 22(10) 1999

Vol. 22(11) 1999

Vol. 23(x) 2000

Vol. 23(x) 2000

Vol. 23(x) 2000

New IOBC/global Publications

Egg Parasitoid News, No. 11, 53 pp., October 1999. Edited by: Dr. Sherif A. Hassan, Institute for Biological Control, Heinrichstrasse 243, D-64287 Darmstadt, Germany. Printed and published by the Federal Biological Research Centre for Agriculture and Forestry, Messeweg 11/12, D-38104 Braunschweig, Germany
– Included is a list of research workers on egg parasitoids from 54 countries, pages 39-53. You may find the contributions of Egg Parasitoid News as pdf-files in the following homepage:
http://www.bba.de/eggpara

STING, Newsletter on Biological Control in Greenhouses, No. 19, 32 pp., August 1999. Edited by: Joop C. van Lenteren, Laboratory of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands, Tel: +31 317 482327, Fax: +31 317 484821, e-mail: Joop.vanLenteren@users.ento.wau.nl
– Included are the abstracts of papers from the meeting of the Working Group “Integrated Control in Glasshouses”, Brest (France), 25-29 May 1999 (see also IOBC/wprs Bull 21(1), 1999 on page 27 of this issue of Profile).

Other interesting publications brought to attention of Profile

Zunke, Ulrich & J.D. Eisenback (eds., 1999): Entopix Vol. 1. A Journal of Entomological Images. Plant-Parasitic Arthropods and their Natural Enemies. – CD-ROM with more than 1.000 photographs (each image is approximately 640 x 480 pixels) at highest quality JPEG-formate. The species are described with an informative legend and can be searched by key words. An additional seven digitized video clips of insects are also included on the CD-ROM.

Price: The single user institutional price for Entopix is $ 260.00; Individual purchases may be made for $ 160.00 provided that the CD-ROM is shipped to a private address. The CD may be ordered by: Entopix, 3510 Indian Meadow Drive, Blacksburg, VA 24060, USA

Additional informations:
Dr. Ulrich Zunke, Institute for Applied Botany, University of Hamburg, Marseiller Str. 7, D-20355 Hamburg, Germany, e-mail: uzunke@iangbot.uni-hamburg.de
Dr. Jonathan D. Eisenback, Department of Plant Pathology, Virginia Tech, Blacksburg, VA 24060, USA.

New Journal

Agricultural and Forest Entomology, Allan Watt & Keith Walters, eds. (ISSN 1461-9555) – Blackwell Science (published for the Royal Entomological Society). Subscription rates in Europe for Volume 1 (1999) with four issues per year: Institutions £ 212.00, Personal £ 60.00, Airmail included. Further information on the web site: http://www.blackwell-science.com/online

Time-Table of forthcoming events

24 – 28 April, 2000: Meeting of the WG “Protected Crops, Mediterranean Climate, Antalya, Turkey. – Dr. R. Albajes, Universitat de Lleida, Centre UdL-IRTA, Rovira Roure 177, 25006 Lleida, Spain, Fax: +34.973.238301, e-mail: Ramon.Albajes@irta.es; Erdal Sekeroglu, Dept. of Plant Protection, Cukurova University, Agricultural Faculty 01330 Adana, Turkey, Fax: +90.322.3386369, e-mail: seker@pamuk.cu.edu.tr

09 May, 2000: 52nd International Symposium on Crop Protection, Gent, Belgium. (Deadline for the submission of abstracts: January 31, 2000) – Prof.Dr. ir. P. De Clercq, Dept. of Crop Protection, Faculty of
22 – 24 May, 2000: International Symposium on Plant Health in Urban Horticulture, Braunschweig, Germany. – Dr. G.F. Backhaus, Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Pflanzenschutz im Gartenbau, Messeweg 11-12, D-38104 Braunschweig, Fax ++49-531/2993009, e-mail: g.f.backhaus@ bba.de

20 – 26 August, 2000: 21st International Congress of Entomology, Foz do Iguacu, Brazil. – c/o Dr. D.L. Gazzoni, Caixa Postal 231-86001-970 Londrina-PR, Brazil. Tel: ++55-43-3716213, FAX: ++55-43-3716100, (for registration etc.: Fax ++55-41-3721177), e-mail: gazzoni@cnpso.embrapa.br, Web: http://www.embrapa.br/ice

18 – 22 September, 2000: 5th Congress of the European Foundation for Plant Pathology, Taormina and Giardini-Naxos, Sicily, Italy. – EFPP 2000 Secretariat, Institute of Plant Pathology, University of Catania, Via Valdisavoia 5, I-95123 Catania (Italy), Tel +39-95-234416, fax +39-95-234421, e-mail: efpp2000@mbox.fagr.unict.it

25 – 29 September, 2000: 25th Meeting of the WG “Use of Pheromones and other Semiochemicals in Integrated Control”, Samos, Greece. – Dr. P. Witzgall, e-mail: peter.witzgall@phero.net; Correspondence: Maria Konstantopoulou, Institute of Biology, NCSR “Demokritos”, POBox 60228, GR-15310 Aghia Paraskevi Attikis, Tel +301-6503577, -6503556, Fax +301-6511767, e-mail: mkonstan@mail.demokritos.gr, Web: http://phero.net/iobc

02 – 05 November, 2000: Meeting of the SG “Pathology of Nematodes” of the Study Group “Integrated Control of Soil Pests”, Einsiedeln, Switzerland. – Dr. Juerg Grunder, Swiss Federal Research Station, CH-8820 Wädenswil, Switzerland, Tel +41-1-783-6336, -6111, Fax +41-1-783-6434, e-mail: juerg.grunder@wae.faw.admin.ch

01 – 04 December, 2000: Workshop of the WG “Biological Control of Fungal and Bacterial Plant Pathogens” Biocontrol agents modes of action and their interaction with other means of control. Sevilla, Spain. – Dr. Y. Elad, Dept. of Plant Pathology, The Volcani Center, Bet Dagan 50250, Israel, Tel +972-3-9683580, Fax +972-3-9683688,, e-mail: elady@netvision.net.il

2001

26 – 28 April, 2001: Meeting of the Study Group „Induced Resistance in Plants Against Insects and Diseases“, Wageningen, The Nether-

Referring to PC-problems Table 1 of the paper of S. Pleininger & S. Blümel “Implementation and development of IPM in greenhouse crops in Austria” has a couple of printing errors. Please glue the enclosed correct table over Table 1 on page 193!

Below you find the corrected Table 1 reduced to the formate of Profile.

Table 1. Extent of BC/IPM Advisory Service in Austrian greenhouse production from 1996 to 1998

<table>
<thead>
<tr>
<th>Year</th>
<th>1996</th>
<th>1997</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of growers</td>
<td>57</td>
<td>60</td>
<td>51</td>
</tr>
<tr>
<td>Area:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vegetables</td>
<td>51,990 m²</td>
<td>77,700 m²</td>
<td>75,500 m²</td>
</tr>
<tr>
<td>ornamentals</td>
<td>41,260 m²</td>
<td>47,160 m²</td>
<td>39,000 m²</td>
</tr>
<tr>
<td>indoor</td>
<td>13,702 m²</td>
<td>24,400 m²</td>
<td>26,000 m²</td>
</tr>
<tr>
<td>total</td>
<td>106,950 m²</td>
<td>149,260 m²</td>
<td>140,500 m²</td>
</tr>
</tbody>
</table>
Next Issue of Profile

Profile depends on your contributions. It is your opportunity to let others know what is going on in your special field of interest in biological and integrated control, in your Working Group or Study Group. Take a few minutes and mail, fax or even better e-mail to the Editor. Your contributions especially should refer to

– forthcoming events (e.g. meetings of the working groups). Because Profile is issued only twice a year, please let me know the dates of meetings at an very early stage of planning and preparing!
– reports on IOBC/wprs meetings (these are of special interest to those members not attending the meetings)
– informations on new books related to biological and integrated control and basic research in these fields
– biocontrol news (e.g. new pests in the IOBC/wprs region, new introductions and releases of beneficials, important news on commercial biocontrol products)
– new research activities

The summer-issue of Profile (number 29) will be edited in July 2000. Please send your contributions for this issue of Profile to me at the latest:

15, June 2000,

but don’t hesitate to contact me long before this deadline!

Please send your contributions by e-mail (preferably), mail or fax to:

Dr. Horst Bathon
Institute for Biological Control
Heinrichstrasse 243
D-64287 Darmstadt
Germany

Tel ++49-6151-407-0, ++49-6151-407-225
Fax ++49-6151-407290
E-mail: h.bathon.biocontrol.bba@t-online.de
Für Profile 29