Influence of different management practices on the fungal and bacterial biota of carpospheres of ripening grape clusters

Elizabeth Kecskeméti, Beate Berkelmann-Löhnertz and Annette Reineke
Geisenheim University
Institute of Phytomedicine
IOBC Viticulture October 2013
Recent increase of disease pressure of grape bunch rot (*Botrytis cinerea* et al.) due to climate change!
Interactions between microorganisms being present on grape berries can influence the extent of *Botrytis* disease epidemics and may have effects on bunch rot control strategies.
Microbial biodiversity on grape berry skins - Questions

- Can we detect a **change in microbial communities** on grape berry skins during the ripening period?

- Do **different management systems** have an influence on the abundance of microorganisms on grape berry skins?

- Are any **microbial antagonists** present on grape berry skins and is their presence influenced by different management systems?
Sampling site: cv. Riesling, 2010 and 2011

Integrated viticulture

Synthetic fungicides
Sulphur

Copper and Sulphur
Plant resistance inducers

Biodynamic preparations like cow manure

Bioorganic & Biodynamic viticulture
Sampling site: cv. Riesling, 2010 and 2011

integrierte Bewirtschaftung

grapevine plants sampled
Sampling of berries (2010 and 2011)

BBCH 81 – beginning of ripening
BBCH 85 – softening of berries
BBCH 89 – berries ripe for harvest

Date 1 BBCH 81
Date 2 BBCH 85
Date 3 BBCH 89

healthy berries
increase of bunch rot
Extraction of DNA and PCR

DNA Extraction

Berries + H₂O-Tween
down
3 min Sonication
down
30 min Shaking
down
Centrifugation
8000 rpm, 30 min, 22 °C
down
Store pellet at -20 °C
down
DNA Isolation
(PowerSoil® DNA Isolation Kit)
Extraction of DNA and PCR

DNA Extraction
- Berries + H$_2$O-Tween
- 3 min Sonication
- 30 min Shaking
- Centrifugation 8000 rpm, 30 min, 22 °C
- Store pellet at -20 °C
- DNA Isolation (PowerSoil® DNA Isolation Kit)

DNA Pooling
- DNA aliquots of 2 samples per site and date
- = 72 pooled samples
Extraction of DNA and PCR

DNA Extraction
- Berries + \(\text{H}_2\text{O}\)-Tween
- 3 min Sonication
- 30 min Shaking
- Centrifugation 8000 rpm, 30 min, 22 °C
- Store pellet at -20 °C
- DNA Isolation (PowerSoil® DNA Isolation Kit)

Amplification
- 72 samples using fungal ITS primer
- 72 samples using bacterial 16S rDNA primer

DNA Pooling
- DNA aliquots of 2 samples per site and date
 - = 72 pooled samples
DNA Extraction

- Berries + H₂O-Tween
- 3 min Sonication
- 30 min Shaking
- Centrifugation 8000 rpm, 30 min, 22 °C
- Store pellet at -20 °C
- DNA Isolation (PowerSoil® DNA Isolation Kit)

Amplification

- 72 samples using fungal ITS primer
- 72 samples using bacterial 16S rDNA primer

DNA Pooling

- DNA aliquots of 2 samples per site and date
 = 72 pooled samples

454-Sequencing

- LGC Genomics GmbH
 Bacteria: 46,100 reads
 Fungi: 98,900 reads
Extraction of DNA and PCR

DNA Extraction
- Berries + H\(_2\)O-Tween
- 3 min Sonication
- 30 min Shaking
- Centrifugation 8000 rpm, 30 min, 22 °C
- Store pellet at -20 °C
- DNA Isolation (PowerSoil® DNA Isolation Kit)

Amplification
- 72 samples using fungal ITS primer
- 72 samples using bacterial 16S rDNA primer

DNA Pooling
- DNA aliquots of 2 samples per site and date
- = 72 pooled samples

454-Sequencing
- LGC Genomics GmbH
- Bacteria: 46.100 reads
- Fungi: 98.900 reads

Data analysis
Fungal diversity during grape ripening 2010

Increase of abundance of members of Sclerotiniaceae (*Botrytis* et al.) during grape ripening period.
Analysis of similarities (ANOSIM) between samples: Fungal communities present at the same BBCH stage on grape berries are similar between different management systems.
Analysis of similarities (ANOSIM) between samples: Significant difference in the composition of fungal communities between samples from different management practices at **BBCH 89**, higher diversity in samples from integrated vineyard plots.
Four most abundant fungal species

BBCH 81: Significant difference in abundance of *Alternaria alternata* between management practices

BBCH 89: Significant difference in abundance of four most common fungal species between years
Bacterial diversity during grape ripening 2011

Analysis of similarities (ANOSIM) between samples: Significant differences in the composition of bacterial communities on grapes between samples from different management practices at BBCH 81 and 85.
Analysis of similarities (ANOSIM) between samples: Significant differences in the composition of bacterial communities on grapes between samples from different management practices at BBCH 81 and 85.
Five most abundant bacterial species integrated bioorganic biodynamic

BBCH 81: Significant difference in abundance of *Sphingomonas* and *Pseudomonas* between management practices

BBCH 85: Significant difference in abundance of *Pseudomonas* spp. between management practices
Microbial biodiversity on grape berry skins – Questions and first answers

✓ Can we detect a change in microbial communities on grape berry skins during the ripening period? Yes, abundance of members of the Sclerotiniaceae (Botrytis cinerea) increases, extent of fungal biodiversity decreases.

✓ Do different management systems have an influence on the abundance of microorganisms on grape berry skins? Yes, but dependent on species and year.

➢ Are any microbial antagonists present on grape berry skins and is their presence influenced by different management systems?
Presence of putative fungal antagonists

- Aureobasidium pullulans
- Metschnikowia pulcherrima
- Pichia membranifaciens
- Sporidiobolus pararoseus
- Cordicipitaceae u. a. Beauveria bassiana (entomopathogenic fungus)

Presence of antagonists dependent on year and management system, high abundance of *A. pullulans* on grape berries from integrated vineyard plots.
Putative fungal antagonists - qPCR

Fungal reference genes

Integrated bioorganic biodynamic

High variation in abundance of *A. pullulans* and *S. pararoseus* between samples from single grapevine plants
Relative quantities of *S. pararoseus* significantly higher on grape berry samples obtained from integrated compared to those from biodynamic vineyard plots ($p = 0.0028$).
Presence of putative bacterial antagonists and extent of diversity different depending on management system and year; in general high abundance of *Pseudomonas* spp.
Microbial biodiversity on grape berry skins – Questions and answers

✔ Can we detect a change in microbial communities on grape berry skins during the ripening period? Yes, abundance of members of the Sclerotiniaceae (Botrytis cinerea) increases, extent of fungal diversity decreases.

✔ Do different management systems have an influence on abundance of microorganisms on grape berry skins? Yes, but dependent on species and year.

✔ Are any microbial antagonists present on grape berry skins and is their presence influenced by different management systems? Yes, but dependent on species and year; significantly higher abundance of Sporiodobulus pararoseus on grape berry samples from integrated vineyards (qPCR).
Overall: 454 Pyrosequencing is an efficient and high-throughput method to analyse microbial communities on grapes, might have a high potential to answer future questions on the influence of plant protection strategies on (microbial) biodiversity in vineyards.
Thanks to...

...Elizabeth Kecskeméti
...colleagues of the Institute of Phytomedicine
...Stephan Strohmeier for bioinformatic support
...financial support through Hochschule RheinMain
Thanks to...

...Elizabeth Kecskeméti
...colleagues of the Institute of Phytomedicine
...Stephan Strohmeier for bioinformatic support
...financial support through Hochschule RheinMain

... and you for your attention!