Harmfulness of the American grape leaf miner *Phyllocnistis vitegenella* on the grapevine 'Merlot' (*Vitis vinifera*)

A. Lips and M. Jermini

Ascona, October 15 2013
The American grape leaf miner *Phyllocnistis vitigenella*

Phyllocnistis vitigenella Clemens (Lepidoptera: Gracillariidae) is originally from North America.

Found in Europe in the 1995 in the north-east of Italy.

In Switzerland, damages were observed for the first time in 2009 in Ticino (south part of Switzerland).
What must consider the development of an integrated protection strategy?

- Damage analysis
- Analysis of the compensation mechanisms of the plant
- Analysis of the ecological interactions
- Analysis of the interaction with the cultural practices

Decision rules

- Ecological
- Cultural
- Chemical
The aim of the study

Quantify the impact of *P. vitegenella* leaf damage on:

- plant growth
- gas exchange of leaf
- yield quantity and quality

To develop an integrated strategy for the control of *P. vitegenella*.
The experimental design

The study was during 2011 under field conditions in a vineyard located in San Pietro di Stabio (Ticino)

- Untreated plot
- Treated plot
- 2 applications of Spinosad 0.3 l/ha

Choice at BBCH stage 51-53
- 20 plants in the untreated plot
- 10 plant in the treated plot

Regulation during the growth of:
- Number of shoots/plant
- Number of clusters/plant
- Number of main leaves/shoot
Damage analysis: population dynamic

P. vitegenella flight activity

- 2010
- 2011

Ripening period
Harmfulness Phyllocnistis vitegenella
Lips and Jermini

Damage analysis: evolution of the leaf damage

Ripening period
Damage analysis: influence on gas exchange

Main leaves

Lateral leaves

Measurement made during ripening period
Damage analysis: estimation of the leaf damage

Harmfulness Phyllocnistis vitigenella
Lips and Jermini
Harmfulness Phyllocnistis vitegenella
Lips and Jermini

Damage analysis: dynamic of the damaged leaf area

![Graph showing damaged leaf area over time for untreated and treated plots. The ripening period is highlighted.]
Damage analysis: Influence on yield components

Results at harvest (September 28)

- Yield (kg/plant)
- Must soluble solids (Brix)
- Total acidity (g/l)

Comparison between Untreated and Treated samples.
Damage analysis: Influence on yield components

Data from August 11 and September 28

\[y = 0.434x + 16.076 \]
\[R^2 = 0.3766 \]
\[n = 60 \]
Analysis of the compensation mechanisms of the plant

- Increase of gas exchange/leaf physiology
- Increase of the leaf area of lateral shoots
- Mobilization of the reserves stored in the roots
Analysis of the ecological interactions

Microhymenoptera (Eulophidae) were responsible of a parasitism variable between 5% and 33% (analysis made on 22 vineyards).
The prevalent species detected are:

Chrysocharis nephereus
Minotetristichus ecus
Closterocerus trifasciatus
Closterocerus erxias
Neochrysocharis cf. formosa
Pediobius saulius
Cirrospilus sp.

For more informations:
G. Pezzatti, C. Cara, L. Torriani, V. Trivellone, F. Müller, M. Moretti, M. Jermini
Factors affecting the parasitoid complex of *Phyllocnistis vitegenella* Clemens in vineyards of Southern Switzerland
Conclusion

These results showed that

P. vitigenella hadn’t negative influence on growth and yield quantity and quality on grapevine Merlot in Southern Switzerland.

Probably, the loss of the assimilating leaf area caused by *P. vitigenella* don’t induce compensation mechanisms.

The application of a direct control strategy is, at this moment, not necessary.

The application of a direct control strategy is, at this moment, not necessary.