Session I. Chances and limits in multitrophic interactions

Oral presentations

Are population differences in plant quality reflected in the preference and performance of endoparasitoid wasps?
Rieta Gols, Nicole M. van Dam, Ciska E. Raaijmakers, Roel Wagenaar, Marcel Dicke and Jeffrey A. Harvey .. 3-4
Abstract only

Chemically induced resistance to pathogens and mycorrhizal symbiosis in soybean: Reciprocal effects and impact on plant fitness
M. de Román, I. Fernández, T. Wyatt, M. Heil and M. J. Pozo .. 5
Abstract only

Impact of the presence of a generalist predator, the minute pirate bug *Orius insidiosus* (Hemiptera:Anthocoridae), on tomato induced defenses
H. M. Quaghebeur and G. W. Felton ... 6
Abstract only

Aspects of the influence of exogenous methyl jasmonate on strawberry plants and on the population size of the two-spotted spider mite (*Tetranychus urticae* Koch.)
W. Warabieda and R. W. Olszak ... 7-13
Abstract: In two experiments conducted on strawberry plants, exogenous methyl jasmonate (JA-Me) was investigated as to its effect on the population size of the two-spotted spider mite (*Tetranychus urticae* Koch.) as well as on plant growth, flowering and yield. Experiments were conducted on strawberry plants of the Kent cultivar growing under glasshouse conditions. In the first experiment, a negative influence of the JA-Me treatment of plants on growth of the population of the two-spotted spider mite was observed. The second experiment was carried out for two years. In the first year of the study, all flowers of the strawberry plants were removed and no effect of JA-Me treatment on total leaf area of the plants was observed. However, in the second year of the study, when plants were allowed to flower and fruit, reduction of plant growth was recorded after JA-Me treatment. No influence of JA-Me was observed on flowering and yield of strawberry plants.
Priming plant innate immunity
Yuhua Zhang, Shakoor Ahmad, Estrella Luna-Diez, Matthias Erb, Ted Turlings, Victor Flors, Brigitte Mauch-Mani, Sjoerd van der Ent, Marieke van Hulten, Corné M. J. Pieterse, and Jurriaan Ton .. 14
Abstract only

The role of the benzoxazinone pathway in aphid resistance in wheat
Ruth Gordon-Weeks, Lesley Smart, Henriett Elek, Shakoor Ahmad, Janet Martin, Yuhua Zhang and John Pickett .. 15
Abstract only

Extrinsic plant defence inducers and multitrophic interactions: the effects of β-aminobutyric acid on a hymenopterous parasitoid of aphids
S. Hodge and G. Powell .. 16
Abstract only

Root-emitted volatiles analysed with Proton-Transfer Mass-Spectrometry (PTR-MS) reveal the secret life of cabbage root fly larvae (Delia radicum)
N. M. van Dam, E. Crespo, A. Laska, C. A. Hordijk, F. J. M. Harren and S. M. Cristescu .. 17
Abstract only

Green leafy volatiles: Priming and insect attraction in a maize field
G. von Mérey, T. Turlings and M. D’Alessandro .. 18
Abstract only

Pine tree chemical defensive strategies and the evolutionary trade-off between induced and constitutive defences
L. Sampedro, X. Moreira and R. Zas .. 19
Abstract only

The transcription factor MYC2 shapes plant defense responses in Arabidopsis upon Pieris rapae herbivory
Adriaan Verhage, Ido Vlaardingerbroek, Marcel Dicke, Saskia C. M. van Wees and Corné M. J. Pieterse... 21-25
Abstract: Plants are capable to defend themselves against a broad range of attackers. Once an attacker has passed constitutive barriers, several plant hormones are produced leading to a local and systemic defense response that will counteract the invader. It is known that the hormone jasmonic acid (JA) plays a major role in the defence against insects and necrotrophic pathogens. JA can activate different sets of JA-responsive genes, depending on other (attacker specific) signaling molecules that are simultaneously produced upon attack (e.g. the phytohormones abscisic acid (ABA) and ethylene (ET)). Transcription factors (TFs) play an important role in the regulation of the differential JA responses. In Arabidopsis thaliana the TF MYC2 was identified as key regulator of wounding specific JA-regulated responses. MYC2 gene expression is activated by both JA and ABA and repressed by ET. In contrast, several ERF-type TFs such as AtERF14, ERF1 and ORA59 are activated by JA and ET and repressed by ABA. The MYC2 TF is believed to be important in defense against insects. Upon caterpillar feeding, a plant mutated in MYC2 shows a shift in its JA-dependent transcriptional profile compared to the wild type. In wild-type Arabidopsis, the MYC2-dependent VSP2-branch of the JA response is activated, while in mutants impaired in MYC2 (jin1 mutants) the ERF-dependent PDF1.2-branch is activated. Although this shift in transcription pattern appeared to have no direct influence on the growth of larvae of the small cabbage white (Pieris rapae), caterpillar choice tests revealed that P. rapae larvae have a preference for myc2 mutant plants over wild-type plants. This indicates that activation of MYC2-
dependent JA responses plays a role in deterring insect herbivores such as *P. rapae*, resulting in less damage to the plant.

Resistance induction and priming by plant volatiles

Martin Heil ... 27-34

Abstract: Plants can pre-empt enemy attack by monitoring the defensive stage of their neighbours or of other organs of the same plant. Resistance can be expressed by intact and uninfected plants when these have been exposed to volatiles that are released from infected or infested neighbours. This phenomenon is now well known from many unrelated plant species. Recent studies demonstrated that these volatiles also play important roles in within-plant signalling. Lima bean (*Phaseolus lunatus*) plants that were locally infested released volatiles, which triggered resistance responses in other, yet unaffected parts of the same plant. Different volatiles regulated resistance to herbivores and pathogens and volatiles at lower concentrations primed rather than fully induced resistance: primed tissues do not express full resistance levels but respond faster and stronger once they are attacked. Signalling that is mediated by volatiles adds significantly to the phenotypic plasticity in plant resistance expression and allows plants to survive in an ever-changing environment and in the unpredictable presence of its mobile enemies.

Antimicrobial effects of extrafloral nectar (EFN)

M. González-Teuber, M. J. Pozo and M. Heil ... 35

Abstract only

The role of induced defences in the success of an exotic pine: the importance of recognizing your enemies

Rafael Zas, Luis Sampedro and Xoaquín Moreira .. 37-41

Abstract: The Enemy Release Hypothesis (ERH) is one of the mostly cited theories to explain how exotic species become invasive out of its natural range. This hypothesis posits that plants species become invasive because of reduced regulation by herbivores in their introduced range. This hypothesis has been widely tested in different plant-animal systems and results are controversial. We investigate whether differences in inducibility between a native (*Pinus pinaster*) and an exotic pine (*P. radiata*) may explain the differences in the attack patterns of a local generalist insect herbivore, *Hylobius abietis* (Coleoptera, Curculionidae). We evaluated the damage rate of this insect in i) *in vitro* cafeteria experiments, ii) *in vivo* bioassays, and iii) in two naturally infected genetic trials of both species, jointly planted on a coniferous clear-felled area. Contrary to the ERH predictions, debarked area caused by the pine weevil was significantly greater in the exotic pine in both field trials. However, *in vitro* bioassays with the same material showed the opposite, and the pine weevil clearly preferred the species with which it has coevolved. No significant differences were observed in the *in vivo* bioassays after a 72h feeding period. The higher resistance of *P. pinaster* in field conditions could derive from induced resistance mechanisms preferentially elicited in the native species following the insect damage. Indeed, the induction of resin in the stems (the main resistant trait in conifers) after a 72h feeding period was twice in the native than in the exotic pine. These results suggest that the native pine, although constitutively more susceptible, is able to recognize the potential enemy, and elicit the appropriate defence mechanisms, resulting in significantly better defended seedlings. Considering the capability to elicit induced resistance traits against alien and local insects appeared to be essential to correctly interpret the predictions of the ERH.

Poster presentations

Understanding the rhizobacterial-mediated induction of systemic resistance in melon

L. García-Gutiérrez, A. de Vicente and A. Pérez-García .. 45

Abstract only
Factors influencing the inhibition of aphids by β-aminobutyric acid

Simon Hodge and Glen Powell ... 47-51

Abstract: β-aminobutyric acid (BABA) is a non-protein amino acid that confers wide-ranging protection in a number of plant families against a variety of plant pathogens, nematodes and insect herbivores. This paper aimed to clarify some of the conditions under which application of BABA to a host plant inhibits the performance of aphids. With whole plants, application of BABA by spraying or dipping foliage had no effect on aphid performance, whereas application as a root drench caused a reduction in growth of a number aphid species developing on a range of host plants. This suppression was not observed when γ-aminobutyric acid was applied, suggesting the effect is isomer specific. Aphid growth was also reduced on detached leaves where the cut end of the petiole was immersed in BABA-solution, indicating that the plant did not need to be intact for BABA-induced inhibition to occur. Adult aphids maintained on BABA-treated plants exhibited reduced nymph production after 4-5 days. The findings indicate that BABA-induced inhibition of aphids is a very general effect, occurring in all plant species so far tested, against all aphid species, genotypes and life stages.

The effects of β-aminobutyric acid on seed germination, growth and chemical composition of crop plants

Simon Hodge, Glen Powell and Mitchell Andrews ... 53-57

Abstract: DL-β-aminobutyric acid (BABA) is a non-protein amino acid that confers wide-ranging protection in a number of plant families against a variety of plant pathogens and insect herbivores. However, BABA can sometimes produce phytotoxic effects or lead to reductions in plant growth or yield. The performance of insect herbivores maintained on BABA-treated host plants could be affected by stress-induced changes in the plant as well as by enhanced plant defences, so it is important to clarify the effects of BABA on plant functioning. Soaking seeds (*Vicia faba*, *Medicago truncatula*, *Brassica oleracea*, *B. rapa* and *Hordeum vulgare*) in BABA solution for 24h had no effect on their subsequent germination. However, application of BABA as a root drench caused reductions in shoot length and shoot fresh weight of *Pisum sativum*, *Medicago truncatula*, *Beta vulgaris*, *Hordeum vulgare*, *Solanum lycopersicum* and *Brassica oleracea*. BABA consistently induced an increase in shoot percent dry weight, suggesting an effect on plant water balance. BABA caused numerous changes in the chemical composition of shoot material of *Vicia faba* and *Medicago truncatula*, including an increase in the concentrations of H and N. There was also a decrease in K in both plants, which might be another factor associated with plant water balance. The results suggest that, although BABA is known to act via the priming or activation of various defence pathways, there are also a number of physical and chemical changes induced in the host plant that could potentially impact on the performance of insect herbivores.

Mycorrhizal symbiosis as a strategy for root parasitic weed control

Juan Antonio López-Ráez, Sabine Christina Jung, Iván Fernandez, Juan Manuel García, Harro Bouwmeester, María José Pozo ... 59-63

Abstract: Parasitic weeds of the genera *Striga* and *Orobanche* spp cause severe damage to important agricultural crops worldwide. Although some promising control methods against these parasitic plants have been developed, new strategies for integrated approaches are still relevant. The lifecycle of root parasitic weeds is intimately associated with their host and is a suitable target to develop such new control strategies. Of particular interest are approaches directed at early stages of the host-parasitic interaction. Strigolactones were first described as germination stimulants for the seeds of these root parasitic plants. In addition, they also act as host detection signals for arbuscular mycorrhizal (AM) fungi. It is well known that AM fungi have a positive effect on plant fitness and on the induction of plant defence responses, conferring resistance to biotic and abiotic stresses. In relation to parasitic plants, it has been recently shown that AM fungal inoculation of maize and sorghum lead to a reduction in *Striga hermonthica* infection. Moreover, we previously showed that a tomato mutant with a reduced production of strigolactones was less susceptible to *Orobanche aegyptiaca* infection. Here we show that tomato
Plants colonized by the AM fungus *Glomus mosseae* induce less germination of *Orobanche ramosa* seeds than non-mycorrhizal plants. The results indicate that AM fungi may be used as a suitable tool for controlling root parasitic weeds by reducing strigolactone production by the host plant.

Session II. Chances and limits in model systems

Oral presentations

Oxylipins: a class of lipid signals mediating defence and plant development
T. Vellosillo, M. Martínez, G. Bannenberg, M. A. López, J. Vicente, M. Bartsch, S. Kulasekaran, T. Cascón, M. Hamberg and C. Castresana ... 67
Abstract only

An array of responses to insect feeding in cabbage cultivars
C. Broekgaarden, E. H. Poelman, G. Steenhuis, R. E. Voorrips, M. Dicke and B. Vosman ... 68
Abstract only

Screening of tomato endophytic fungi for potential biological agents
Diana Rocio Andrade Linares, Rita Grosch and Philipp Franken 69-73
Abstract: Tomato plants from four different sites in Colombia were used for the isolation of fungal endophytes. In total 51 isolates were obtained from roots and further characterised. Growth on different agar media and classification according to their morphology revealed that 20 isolates belong to *Fusarium* species, whereas 17 isolates were difficult to cultivate. The effect of the remaining 14 isolates on growth characteristics of tomato plants was analysed and root colonisation ability was controlled by reisolation and by microscopical observation. Those isolates not showing obvious endophytic growth or which had negative effects on at least one of the growth parameters were omitted. This procedure resulted in the selection of three fungal isolates which could be used as potential biological agents in tomato crops.

Root herbivore induced shoot resistance: physiological explanations for a counterintuitive phenomenon
M. Erb, J. Ton, V. Flors, J. Degenhardt and T. J. C. Turlings ... 74
Abstract only

Molecular analysis of *Piriformospora indica*-induced resistance in barley and *Arabidopsis*: the role of plant hormones and host cell death
K. H. Kogel, B. Khatabi, and P. Schäfer ... 75
Abstract only

Glucosinolates as a major factor in disease resistance of *Arabidopsis*
K. Schlaeppi, A. Buchala, E. Abou-Mansour and F. Mauch ... 76
Abstract only

Networking by small-molecule hormones in plant immunity
Corné M. J. Pieterse, Antonio Leon-Reyes, Dieuwertje van der Does, Adriaan Verhage, Annemart Koornneef, Johannes A. van Pelt and Saskia C. M. van Wees ... 77-80
Abstract: Plants live in complex environments in which they intimately interact with a broad range of microbial pathogens and insect herbivores with different lifestyles and infection or feeding strategies. The evolutionary arms race between plants and their attackers provided plants with a sophisticated defense system that, like the animal innate immune system, recognizes the attacker and responds by activating specific defenses that are specifically directed against the
invader. Recent advances in plant immunity research provided exciting new insights into the underlying defense signaling network. Diverse small-molecule hormones play pivotal roles in the regulation of this network. Their signaling pathways cross-communicate in an antagonistic or synergistic manner, providing the plant with a powerful capacity to finely tailor its immune response to the attacker encountered. Pathogens and insects, on the other hand, can manipulate the plant’s defense signaling network for their own benefit by affecting phytohormone homeostasis to antagonize the host immune response.

Plant innate immunity: at the cell wall and beyond
Antonio Molina, Andrea Sánchez-Vallet, Lucía Jordá, Clara Sánchez-Rodríguez, Marie-Pierre Rivière, Magdalena Delgado and Chiara Consonni

Abstract only

Implication of callose deposition in the OCP3-mediated disease resistance to necrotrophic pathogens
J. García-Andrade, V. Ramírez, V. Flors and P. Vera

Abstract only

Using short-lived radiotracers to study short-term induced changes in resource dynamics
S. Gómez, R. A. Ferrieri, M. Schueller and C. M. Orians

Abstract only

Transcript profiling of plant-aphid interactions in barley as an approach to identifying resistance genes
G. Delp, T. Gradin, I. Áhman and L. M. V. Jonsson

Abstract only

Role of the Thctf1 transcription factor of Trichoderma harzianum in 6-pentyl-2H-pyran-2-one production and antifungal activity
M. Belén Rubio, M. Rosa Hermosa, Michelina Ruocco, Matteo Lorito and Enrique Monte

Abstract: The Trichoderma harzianum Thctf1 gene, which shows high sequence identity with a transcription factor gene of Fusarium solani f. sp. pisi, was cloned and characterized. In T. harzianum T34, disruption of the Thctf1 gene by homologous recombination gave rise to transformants that did not show the yellow pigmentation observed in the wild-type strain in plate experiments. In several Trichoderma spp. a yellow pigmentation and a coconut aroma have been related to the production of 6-pentyl-2H-pyran-2-one (6PP) compounds. Prompted by this, we explored whether the loss of pigmentation in the Thctf1 null mutants of T. harzianum could be related to the synthesis of 6PP. Chromatographic and spectroscopic analyses revealed that the disruptants did not produce two secondary metabolites, derived from 6PP and not previously described in Trichoderma genus, that are present in wild-type culture filtrates. Since 6PP is a recognized antifungal compound, this ability was analyzed in vitro in both the disruptants and in the wild-type. It was observed that the Thctf1 null mutants of T. harzianum had reduced antimicrobial capacity. In vivo assays are also being carried out in order to analyze the tomato plant behaviours in interaction with T. harzianum T34 and the deletion mutants, in the absence or presence of a pathogen. Tomato microarrays are being used to explore the changes in the plant transcriptome during these interactions.

New insights into the complex role of ABA in Arabidopsis thaliana resistance to necrotrophic pathogens
A. Sánchez-Vallet, G. López, and A. Molina

Abstract only
Cloning and characterization of a mutant impaired in β-aminobutyric acid-induced priming for cell wall defense in *Arabidopsis*
Y. Zhang, M. van Hulten, E. Luna-Diez, C. M. J. Pieterse and J. Ton 90
Abstract only

The CaMV35S promoter is not a constitutive promoter in transgenic sunflower plants
L. M. Radonic, D. Zavallo, J. M. Zimmermann, N. E. López and M. Lopez-Bilbao ... 91
Abstract only

Temporal and within-plant variation of induced resistance in apple seedlings
B. Gutbrodt, K. Mody, R. Wittwer and S. Dorn ... 92
Abstract only

Poster presentations

Deciphering the function of *Arabidopsis* heterotrimeric G protein in innate immunity
M. Delgado, L. Jordá, C. Sanchez-Rodriguez, A. Jones, and A. Molina 95
Abstract only

Polyamines putative mediators of plant resistance
V. Flors, G. Camañes, V. Pastor, B. Vicedo, M. Cerezo and P. García-Agustín ... 97-102
Abstract: Polyamines are plant growth regulators that have been previously associated to plant responses to abiotic stress. However there is not much information about their possible relation to plant-pathogen responses. In the present work, we demonstrated that plants overexpressing *SAMDC* (S-adenosylmethionin decarboxylase) and *ADC2* (Arginine decarboxylase2) behave hypersensitive to *Pseudomonas syringae*. Accordingly, the T-DNA knockdown mutants *adc2* and *samdc1* display reduced sensitivity to the bacterium. Despite these results, polyamine mutations result in an overcompensation by other biosynthetic genes rendering unexpected polyamine profiles. In order to better understand the roles of polyamine in plant resistance, a fast analytical method for underivatized polyamines has been developed. The analysis is based on LC coupled to MS/MS by using additives to ion-pair polyamines.

Functional characterization of the PRLIP2 gene in *Arabidopsis*
S. Kovacs, A. Nagy, A. Boldizsar and G. Jakab ... 103
Abstract only

Impact of environmental factors on PAMP-induced callose in hydroponically grown *Arabidopsis*
Estrella Luna, Brigitte Mauch-Mani, Victor Flors, Pilar Garcia-Agustín, Yuhua Zhang and Jurriaan Ton... 105-112
Abstract: Plants respond to pathogenic microbes by depositing callose-rich papillae, which prevents further colonization by the pathogen at an early stage of infection. Recently, it was discovered that induced callose deposition is regulated by glucosinolates metabolites (Nishimura et al., 2003). To further study the impact of environmental factors on this defence reaction, we studied callose deposition in hydroponically grown *Arabidopsis* seedlings upon challenge with two pathogen-associated molecular patterns (PAMPs), flagellin and chitosan. Seedlings exposed to high light intensity (~150µM/m²/s) showed significantly enhanced amounts of callose deposition compared to those exposed to relatively low light intensity (~75µM/m²/s), suggesting that light potentiates callose deposition. Conversely, increasing concentrations of sucrose in the medium suppressed basal and PAMP-induced callose depositions, possibly due to a suppression of photosynthesis activity (Clay et al., 2009). Interestingly, addition of antioxidant vitamins to the
growth medium suppressed basal and PAMP-induced callose deposition, suggesting that reactive oxygen species (ROS) enhance PAMP-induced callose deposition. Since the plant hormone ABA is involved in priming of pathogen-induced callose (Gomez-Gomez & Boller, 2000), sugar signalling (Iriti & Faoro, 2008) and ROS production (Kohler et al., 2002), we investigated the effects of this hormone in our model system. Addition of ABA to the growth medium augmented both basal and PAMP-induced callose. This outcome suggests a positive influence of ABA on callose deposition, consistent with a stimulatory role of ROS in callose deposition. However, this result is not consistent with findings by other labs, who reported suppressive effects by ABA on induced callose deposition (Nishimura et al., 2003). Based on our finding that various environmental factors can influence callose deposition, we propose that the variable effects by ABA are caused by interactions between ABA signalling and other abiotic stress pathways.

OCP3, a new regulator of the Induced Systemic Resistance
V. Ramirez, J. Garcia-Andrade, S. van der Ent, C. Pieterse and P. Vera 113
Abstract only

Study of interactions between nematodes and host / non-host plants
in a model system using plant tissue culture
D. V. Shumilina, M. V. Pridannikov and K. A. Kromina ... 114
Abstract only

Role of a trichodiene synthasa gene of Trichoderma brevicompactum as elicitor of antimicrobial activities, and defence and development plant responses
A. Tijerino, R. E. Cardoza, M. Gómez, S. Gutierrez, E. Monte and R. Hermosa ... 115
Abstract only

Session III. Chances and limits in crop protection
Oral presentations

Aspects of induced resistance against grapevine downy mildew
X. Daire, S. Trouvelot, B. Poinssot, M. Adrian, M.-C. Heloir and A. Pugin 119
Abstract only

Potential benefits and limitations of grapevine self protection
induced by a beneficial microorganism
Michele Perazzolli, Elisa Bozza, Giacomo Cestari, Yigal Elad, Claudio Moser and Ilaria Pertot ... 121-125
Abstract: Some beneficial microorganisms can reduce disease symptoms through activation of the induced systemic resistance (ISR). Scarce knowledge is available on the efficacy, persistence and fitness cost of ISR in non-model systems. Our aim was to characterize the resistance against Plasmopara viticola activated in grapevine by the biocontrol agent Trichoderma harzianum T39. T39 activated a systemic resistance and reduced downy mildew symptoms at a level comparable to treatments with benzothiadiazole (BTH). However, if only the treated leaves were considered, T39 induced a lower protection level and a shorter persistence of the effect compared to BTH. In addition, BTH treatments entailed energy costs, which strongly reduced grapevine growth, but T39 treatments did not affect photosynthesis and plant growth. These results suggest the activation of different defense pathways in grapevine after BTH and T39 treatment.

Mobilization of insect defenses in maize
D. S. Luthe, L. Lopez, A. Ankala, T. Gill, W. Po Chuang and W. P. Williams ... 126
Abstract only
Sugar signaling as a new way for vegetable and fruit induced resistance against insects, pathogens and nematodes

S. Derridj, Y. Elad and A. N. E. Birch ... 127

Abstract only

Perception of herbivores in the tomato plant

G. W. Felton and M. Peiffer .. 128

Abstract only

Differential responses of herbivorous insect species to protease inhibitors from barley and strawberry

Laura Carrillo, Manuel Martinez, Inés Cambra, Marina Gambardella, Guy Smagghe, Felix Ortego and Isabel Diaz .. 129-132

Abstract: In this study has been analysed the in vitro inhibitory activity of cystatins from barley (HvCPI1 to HvCPI-13) and strawberry (FaCPI-1) against different species of insects that rely on cysteine-like proteases for digestion. These proteins presented different capability to inhibit the activity of cathepsin L-like protease activities in the different species tested, being HvCPI-6 the most effective inhibitor. Gelatin-containing gels showed most of the multiple protease forms detected in the insect extracts were partially or even totally inhibited by this barley cystatin. Besides, the in vivo effect of this HvCPI-6 was analysed on two aphid species by feeding assays with supplemented artificial diets.

Priming plants for stress resistance: from the lab and the field

Gerold J. M. Beckers, Michal Jaskiewicz, Yidong Liu, William R. Underwood, Sheng Yang He, Shuqun Zhang and Uwe Conrath 133-137

Abstract: Upon infection by a pathogen or upon treatment with certain commercial fungicides plants can develop resistance to a broad spectrum of pathogens and/or abiotic stress. The induced resistance is frequently associated with the so-called “priming” of cells. Priming is the phenomenon that enables cells to respond to much lower levels of a stimulus in a more rapid and robust manner than non-primed cells (Prime-A-Plant Group, 2006). It has been hypothesized that priming involves accumulation of dormant signaling components that are not used until challenge exposure to pathogens or abiotic stress. However, until recently the identity of such signaling components has remained elusive. We showed that during development of induced resistance in Arabidopsis thaliana, priming is associated with accumulation of mRNA and inactive protein of mitogen-activated protein kinases (MPK) 3 and MPK6. Upon challenge exposure of the plants to Pseudomonas syringae pv. maculicola or infiltration of water into leaves, these two enzymes were more strongly activated in primed plants than in non-primed plants. This elevated activation was linked to enhanced defense gene expression and development of induced resistance. In addition, priming of defense gene expression and induced resistance were lost or reduced in mpk3 or mpk6 mutants (Beckers et al., 2009). Our findings argue that pre-stress deposition of the signaling components MPK3 and MPK6 is a critical step in priming plants for full induction of defense responses during induced resistance. The role of MPK3 and MPK6 in induced resistance and the potential of priming for modern pest management in the field is illustrated.

Arbuscular mycorrhiza induce systemic resistance against gray mold (Botrytis cinerea) in tomato through priming of JA-dependent defense responses

Sabine C. Jung, Javier García-Andrade, Adriaan Verhage, Iván M. Fernández, Juan M. García, Concepción Azcón-Aguilar and María J. Pozo .. 139-144

Abstract: Arbuscular mycorrhizal fungi (AMF) are soil fungi that form mutualistic symbioses with the roots of about 80% of all terrestrial plants. The association improves plant fitness in terms of nutrition and resistance to biotic and abiotic stresses. We analyzed the susceptibility of mycorrhizal and non-mycorrhizal tomato plants to the necrotrophic fungus Botrytis cinerea, causal agent of gray mold in tomato leaves. Disease severity was lower in mycorrhizal plants. Moreover, the amount of pathogen in the tissues was significantly reduced in those plants.
Similar results were obtained in whole plant and detached-leaf assays, confirming Mycorrhiza Induced Resistance (MIR) to B. cinerea. We have analyzed the possible role of jasmonate regulated defense responses in the enhanced resistance. The induction of jasmonic acid (JA)-dependent marker genes in response to Botrytis inoculation was higher in mycorrhizal plants. Furthermore, mycorrhizal plants displayed a potentiated response to exogenous application of JA. Altogether, our results suggest that systemic resistance to B. cinerea in mycorrhizal plants is associated to priming of JA-dependent responses.

Priming in melon plant induced by FEN560, a novel plant extract elicitor in challenge against biotic attackers

Djamel Edine Kati, Sabine Schorr-Galindo, Ziya Gunata, Robert Ratomahenina, and Jean-Claude Baccou .. 145-150

Abstract: This study describes the priming in induced resistance in melon plants treated with FEN560, a plant extract elicitor derived from Trigonella foenum-graecum that was developed for bio-phytosanitary uses. In order to assess the priming occurrence, two cultivars of Cucumis melo L. (susceptible and resistant cultivars) were artificially infected with Fusarium oxysporum Schlecht. f. sp. melonis (FOM), 24h after FEN560-treatment. To evaluate the systemicity of induced resistance triggered by FEN560, treatments were performed either by spraying the FEN560-solution or through irrigation. As marker of induced resistance, the changes in lipoxygenase (LOX) and peroxidase (POD) activities were monitored. Besides, a comparative study of peroxidase isoenzymes in roots and cotyledons was also performed by iso-electro-focusing (IEF) technique. Results of lipoxygenase and peroxidase kinetic activities and their isoforms showed that FEN560 markedly induced the resistance in both melon cultivars. Activation of the enzymatic markers also depended on the mode of treatment. Interestingly, the induced resistance triggered by the foliar treatment was similar to Systemic Acquired Resistance while the induced resistance triggered by the treatment of roots was comparable to Induced Systemic Resistance. Nevertheless, the priming was localised on the inoculation site (biotic elicitation), mainly observed in susceptible cultivars.

Implications of nitrogen metabolism in plant basal resistance and priming

Gemma Camañes, Victor Flors, Victoria Pastor, Begonya Vicedo, Javier García-Andrade, Miguel Cerezo and Pilar García-Agustín 151-156

Abstract: Nitrate transporters are membrane proteins in charge of nitrate transport through the roots. Among the nitrate transporters, AtNRT2.1 and AtNRT2.2 are the main transporters involved in uptake of nitrate when it is present at low concentrations through a high-affinity transport system (HATS). Apart from nitrate transport, it is speculated that these transporters, the gene or the protein, may have additional roles in signaling and definition of root architecture. A mutation in both high affinity nitrate transporters (AtNRT2.1 and AtNRT2.2) confers enhanced resistance against Pseudomonas syringae by priming SA dependent responses. Enhancement of SA marker genes PR-1 and PR-5 is correlated with increases of the hormone SA during the first 48h after infection. Interestingly, AtNRT2 induction after three days of nitrate starvation results in enhanced susceptibility in wild-type plants against Pst. In addition, mutant plants showed altered ABA control by Pst. ABA level does not change in atnrt2 during the infection while it is increased in wild type plants. Coronatine less Pst DC3118 produces reduced symptoms on Ws background while it grows as Pst DC3000 in atnrt2.1. Therefore it seems that atnrt2 displays some interference with ABA signaling, which probably results in a deficient ABA control by the pathogen. All these results suggest that both transporters may act as environmental sensors of abiotic/biotic stress modifying plant responses to pathogens.

The challenge of marketing induced resistance-products (ISRP) today

Sergio Cáceres ... 157

Abstract only
Possibilities on the use of resistance inducers in tobacco leaf production, results of field works in Brazil
A. B. da Rocha and S. A. Willani ... 158
Abstract only

Chitosan in induced resistance: more chances than limits or vice versa?
Marcello Iriti, Valentina Picchi, Dario Maffi and Franco Faoro 159-163
Abstract: The effectiveness of chitosans (CHTs), deacetylated chitin derivatives, as plant resistance inducers depends on a number of variables, such as the molecular weight (MW) and the deacetylation degree (DD) of the oligomers/polymers, the solvent, the pathosystem and the mode of administration. All these aspects are briefly examined and discussed with the aim of giving useful advices for successful application of CHTs, particularly to control virus diseases.

Mycorrhizal symbiosis as a strategy for root parasitic weed control
Juan Antonio López-Ráez, Sabine Christina Jung, Iván Fernandez, Juan Manuel García, Harro Bouweeester and María José Pozo 165-169
Abstract: Parasitic weeds of the genera Striga and Orobanche spp. cause severe damage to important agricultural crops worldwide. Although some promising control methods against these parasitic plants have been developed, new strategies for integrated approaches are still relevant. The lifecycle of root parasitic weeds is intimately associated with their host and is a suitable target to develop such new control strategies. Of particular interest are approaches directed at early stages of the host-parasitic interaction. Strigolactones were first described as germination stimulants for the seeds of these root parasitic plants. In addition, they also act as host detection signals for arbuscular mycorrhizal (AM) fungi. It is well known that AM fungi have a positive effect on plant fitness and on the induction of plant defence responses, conferring resistance to biotic and abiotic stresses. In relation to parasitic plants, it has been recently shown that AM fungal inoculation of maize and sorghum lead to a reduction in Striga hermonthica infection. Moreover, we previously showed that a tomato mutant with a reduced production of strigolactones was less susceptible to Orobanche aegythiaca infection. Here we show that tomato plants colonized by the AM fungus Glomus mosseae induce less germination of Orobanche ramosa seeds than non-mycorrhizal plants. The results indicate that AM fungi may be used as a suitable tool for controlling root parasitic weeds by reducing strigolactone production by the host plant.

Induced resistance in pepper by Fo47 is associated to changes in gene expression
Javier Veloso and Jose Díaz ... 171-174
Abstract: Pepper is an important crop that is used in many ways for gastronomic purposes. There are many diseases that affect pepper plants, being Verticillium wilt one of the most important in the region of Galicia (Northwest of Spain). So far, there is not an effective protection scheme based on fungicides or gene-for-gene resistance for this disease, so it is important to explore alternative strategies of control as induced resistance.

In this study we tested the ability of the non pathogenic strain Fo47 to protect pepper plants against Verticillium dahliae. This non pathogenic strain of Fusarium oxysporum was successfully tested in another plant species against Fusarium wilt (Alabouvette & Coutaudier, 1992). In our bioassay we treated pepper plants with Fo47 and then we challenged them by submerging the root in a suspension of Verticillium conidia. Symptom evaluation was done by determining the stem length, the fresh and dry weight and the percentage of wilted leaves. A significant protection against Verticillium wilt was achieved by inducing the plants with Fo47. Systemic response against a necrotrophic fungus (Botrytis cinerea) was also tested, but Fo47 failed to control this pathogen.

An in vitro pairing assay was performed to observe the possible interactions between Fo47 and Verticillium dahliae. Fo47 inhibited partially the growth of the pathogen.
In order to check if gene expression associated to plant defence is induced by Fo47 in pepper, we took samples of the roots and stem of the plants after Fo47 treatment and after the challenge with *Verticillium*. Gene expression was determined by using quantitative (Real Time) RT-PCR. The genes tested were *CASCI*, a sesquiterpene cyclase related with the synthesis of a phytoalexin, *CACHI2*, a gene that encodes a quinase and *CABPR1*, a PR-1 protein. Overall, the expression of the three genes was enhanced by Fo47 both before and after challenge. So far, our results suggest that Fo47 control *Verticillium* both by antagonism and induced resistance.

Characterization and cloning of pathogen-inducible genes and promoters of *Carica papaya* to improve resistance to *Phytophthora palmivora*

Y. J. Zhu, B. Porter and D. Christopher .. 175-179

Abstract: *Phytophthora* species cause devastating diseases to important crop plants world-wide. The *Carica papaya*, the fifth sequenced angiosperm (Ming et al., 2008; Porter et al., 2009), has relatively few genes and is highly susceptible to the broad-host-range pathogen, *P. palmivora*. These qualities make this tropical fruit tree useful for comparative genomics of compatible *Phytophthora*-plant interactions.

As a first step toward engineering resistance of *C. papaya* to *P. palmivora*, defense-related genes and inducible promoters in *Carica papaya* in response to *P. palmivora* were characterized in this study. A survey of the root transcriptome and the expression of genes isolated from the roots of *C. papaya* (cultivar ‘SunUp’) seedlings were evaluated for regulation by *P. palmivora* after infection with this pathogen. Twenty-three genes exhibiting predominant root expression were isolated from a cDNA library created from infected root tissues. Sequence analysis revealed a number of genes associated with stress, pathogen and defense-related response. An open reading frame (ORF) encoding a predicted ascorbate peroxidase was found to be up-regulated in leaves, but not in roots. Another peroxidase ORF was down-regulated in roots, while genes predicted to encode a β-1,3-glucanase and ferulate 5-hydroxylase (F5H) were up-regulated in roots. An ORF encoding a hypersensitive-induced response protein was induced by *P. palmivora* in both roots and leaves. Finally, an ORF predicted to encode an aquaporin with normally high root expression was down-regulated following inoculation. Although many host genes regulated during *Phytophthora* infection are associated with the host defense, others are required for pathogenicity. These genes have significance roles in the plant-pathogen interactions, and several early and strong pathogen-inducible promoters for papaya roots will be useful for engineering novel pathogen resistance. Collectively, expression patterns revealed in this study and similar studies can be used to identify host genes regulated by *Phytophthora* for pathogenicity and host defenses with their associated pathways to provide fundamental knowledge on the mechanisms by which papaya metabolically responds to this pathogen.

Imaging techniques for evaluation of the pathogen impact on the host plant*

Mónica Pineda and Matilde Barón .. 181-184

Abstract: Imaging techniques are currently used for monitoring the plant metabolism and health status. Among them, the most widespread is chlorophyll fluorescence imaging, which can examine photosynthetic performance and evaluate the non-photochemical dissipation processes of the energy non-used in photosynthesis. Multicolour fluorescence imaging can assess both the primary and the secondary metabolism of plants, giving information about the production of several stress-induced phenolic compounds. Thermal infrared cameras provide images of the leaf surface temperature, thus showing transpiration patterns. The set of images obtained combining different imaging techniques could provide “stress signatures”, characteristic of every plant-stress factor.
Poster presentations

Plant growth promoting Rhizobacteria trigger isoflavone metabolism in early stages of development in Glycine max var Osumi
Elena Algar, Ana Garcia-Villaraco, Jorge García Cristobal, F.Javier Gutierrez Mañero and Beatriz Ramos Solano ... 187-191

Abstract: At present, soybean is playing a crucial role both in the field of food and in pharmaceutical industry. Isoflavones (IF) have a remarkable therapeutic potential and can be delivered either through the diet (bioactives or nutraceuticals) or as food supplements, and this has opened a new market for industry. However, due to the inducible nature of secondary metabolism, IF levels change according to environmental conditions leading to inconsistent effects on health. This lack of reproducibility may be overcome by the means of elicitation. Biotic elicitation with plant growth promoting Rhizobacteria (PGPR) is proposed as a useful strategy to improve biomass production and to trigger secondary metabolism at the same time, by using several mechanisms, being especially relevant those that necessarily involve plant metabolism. The aim of this work was to evaluate the effects of nine PGPR isolated from different backgrounds to alter IF levels in Glycine max var. Osumi. Different experiments were carried out inoculating each strain on two-day old pregerminated seeds sown on sterile pots filled with vermiculite. Six days after inoculation, photosynthesis was measured and seedlings were harvested. Weight of shoots, cotyledons and roots were registered and isoflavones in each organ were analyzed by HPLC.

Although only one strain (N21.4) increased total IF contents as compared to controls, five different behaviours were detected when the daidzein and genistein families were analyzed. N21.4 has shown its ability to trigger defensive metabolism against leaf pathogens to a different extent in the model plant A. thaliana and in tomato, and it was a systemic induction in both cases. Interestingly, only one strain caused significant decreases in total IF (M84), and three strains increased IF levels in leaves, two of them coupled to a decrease in roots (N11.37, L81) and one was not accompanied by this decrease (Aur6). All strains triggered IF metabolism so further studies have to be developed since the different beneficial effects of IF through the diet may be due to the different IF profiles and also, they will have different physiological effects on plant performance upon pathogen challenge or for symbiosis establishment.

In conclusion, these are encouraging results from three points of view i) N21.4 increases isoflavones in seedlings; ii) other strains trigger IF metabolism differentially, hence, both facts could be used to prepare food supplements or as enriched standardized foods after full development of the biotechnological procedure and iii) Further studies need to be carried out to relate changes in IF with protection against leaf pathogens, unravelling the underlying mechanisms of the systemic induction.

Chemical induction of SAR in pea (Pisum sativum L.) against pea rust enhances antifungal activity and accumulation of phenolic compounds
Eleonora Barilli, Diego Rubiales and Elena Prats ... 193-197

Abstract: In this work two different pea genotypes, the susceptible cv. Messire and the genotype PI347321 with partial resistance against the pathogen Uromyces pisi were investigated in relation to fungal development following BTH (10mm) and BABA (50mM) treatments. The effect of treatments on β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase and peroxidase activities together with analysis of excreted and total soluble and wall-bound phenolic compounds were also investigated in order to relate them to the different resistant mechanisms. Results show that BTH and BABA systemically impair fungal development at different stages, both prior and after mesophyll cell penetration. Fungal inhibition at early stages was associated to the production of phenolic compounds such as scopoletin and pisatin which were found on both the excreted and the soluble fraction following both treatments. These compounds showed a similar inhibitory effect when exogenously applied in vitro bioassay. Penetration and post-penetration resistance was associated to the enhancement of PR-proteins such as β-1,3-glucanase, chitinase and
peroxidase. However differences in the PR proteins induced were observed between BTH and BABA treatments.

Antimicrobial synthetic cationic lipopeptides and plant induced resistance
Yariv Brotman, Arik Makovitzki, Yechiel Shai, Ilan Chet and Ada Viterbo 199-202
Abstract: A new family of synthetic membrane active ultrashort synthetic lipopeptides composed of only four amino acids linked to fatty acids was tested for their ability to induce systemic resistance and defense responses in plants. We found that two peptides (C16-KK_KK and C16-KL_LK) can induce expression of defense related genes in cucumber leaves when applied through the roots. Moreover these compounds can afford systemic protection against the phytopathogenic bacterium *Pseudomonas syringae pv lachrimans* (PsI). Thus, short cationic lipopeptides are a new low cost category of compounds of potentially high utility in the induction of systemic resistance in plants.

Elicitors of *Leptosphaeria maculans* inducing resistance to blackleg in oil seed rape
Lenka Burketová, Vladimír Šašek, Lucie Lorková, Phuong Dinh Kim and Olga Valentová ... 203-207
Abstract: Compounds produced by *L. maculans* into various cultivation media were tested for their ability to induce defence gene expression by means of RT-qPCR and SAR by inoculation test. After removing toxins and other low molecular metabolites by dialysis, the medium was concentrated and subsequently subjected to fractionation by ionex chromatography. Separated fractions inducing *PR1* expression were digested by trypsin. Tryptic hydrolysates lost their *PR1*-inducing activity, which indicates a protein nature of the efficient elicitors.

Preventive and post-infection control of *Botrytis cinerea* in tomato plants and fruits by hexanoic acid
Maria de la O Leyva, Begoña Vicedo, Ivan Finiti, Pilar Garcia-Agustin and Carmen González-Bosch ... 208
Abstract only

Impact of grapevine downy and powdery mildew diversity on efficacy of phosphonate derivatives (fosetyl-AL and fertilizer PK2) and salicylic acid analog (BTH) described as stimulators of plant defences
Marie-Cécile Dufour, Marie France Corio-Costet ... 209-213
Abstract: Grapevine is subjected to numerous forms of pathogen aggression, especially downy and powdery mildews (*Erysiphe necator* and *Plasmopara viticola*). To develop new integrated pest management strategies and to understand the impact of alternative methods like plant defence stimulators on the evolution of bioaggressor populations, it is important to investigate the role of genetic variability and the evolution potential of pathogen populations subject to alternative method selection, in order to decrease the risk of resistant populations. The efficacy of two phosphonate derivatives (Fosetyl-Al and PK2, a foliar fertilizer) and benzothiadiazol (BTH), a salicylic acid analog, were assessed on the induction of grapevine defences against various phenotypes of grape downy mildew and various genotype groups of powdery mildews in bioassay: firstly by measuring the growth inhibition of pathogens after treatments with the different products; secondly by monitoring gene expressions coding for enzymes of phenylpropanoids (PAL, STS, CHS, CHI, LDOX, BAN), phytohormones (LOX, ACC, PAL) biosynthesis pathways and genes coding for PR proteins (CHIT4c, PGIP, PIN, GLU, PR1, PR10); and finally, by quantifying secondary metabolite production. Thus correlations between gene expression levels, efficacy and phytoalexin production were obtained.
Biological protection conferred by *Glomus* spp. and *Bacillus megaterium* against *Meloidogyne incognita* in tomato and pepper

Elena Flor-Peregrín, Rosario Azcón, Tomás Salmerón, Miguel Talavera 215-218

Abstract: Pot experiments were carried out under controlled greenhouse conditions to determine the effects of the combined use of AMFs (*Glomus intraradices* or *Glomus mosseae*) and a PGPR (*Bacillus megaterium*) on root-knot nematode (*Meloidogyne incognita*) reproduction and growth rates in commercial pepper and tomato cultivars. Nematode reproduction and plant growth were found to vary greatly, depending on the plant species and cultivars concerned. However, nematode reproduction and disease severity (estimated by the gall index) were reduced and plant growth increased in all mycorrhizal plants. Reductions in plant growth caused by *M. incognita* were compensated through root colonization by *Glomus* spp. Nematode infestation did not affect mycorrhizal colonization of roots. No synergistic effects from the combined use of AMFs with *B. megaterium* in tomato were observed but in pepper cv. Perico the decrease in nematode reproduction was more significant when *G. mosseae* and *B. megaterium* were used together than when used separately. Reductions in root colonization by mycorrhizal fungi in commercial tomato varieties carrying resistance genes to *Fusarium* were only observed in one out of five of the tomato cultivars tested.

Individual Plant Growth Promoting Rhizobacteria from an effective consortium stimulate different systemic protection in *Oryza sativa* against salt stress

Abstract: The aim of this study was to evaluate the individual capability of 5 PGPR strains, which co-inoculated demonstrated ability to protect rice plants against salt stress, to stimulate the secondary metabolism of plant and protect them against salt stress. The strains used were: *Arthrobacter oxidans* BB1, *Chryseobacterium balustinum* AUR9, *Bacillus* sp. L81, *Aeromonas* sp AMG272 and *Herbaspirillum* sp DSM6446. Seedlings growing for 7 days in hydroponic culture were inoculated with PGPR, and 7 days after, NaCl was added to the medium to reach a concentration of 3.5g/l. Two days later, the rate of wilt, the peroxidase activity (enzyme linked to stress situations), biometric parameters, and parameters related to plant photosynthetic efficiency (Fv / Fm, NPQ and ΦPSII) were measured.

Strains AMG272, L81 and *Herbaspirillum* were able to reduce the rates of withering up to 80%, while BB1 and AUR 9 failed to protect the plants. The strains that protected against the salt stress, altered peroxidase activity and photosynthetic parameters following the guidelines set in the literature of the process called "priming".

Systemic induction of bean isoflavones by a plant growth promoting Rhizobacteria consortium against the leaf pathogen *Xanthomonas campestris* pv. *phaseoli*

Abstract: Plant growth promoting rhizobacteria are non-pathogenic bacteria able to trigger plant’s defensive metabolism. In some plant species as legumes, isoflavones (IF) are secondary metabolites relevant for human health and also play a role in plant defense. Although among legumes, only soybeans are known for the high IF contents, beans (*Phaseolus vulgaris*) may represent a considerable input of IF in the diets since they are by far, a lot more popular in the Mediterranean area than soybean. Increasing bean productivity according to environmentally friendly agricultural practices is a challenge that increases its attractiveness if the product has an added value such as a high IF content. This may be achieved with biofertilizers which aim to improve plant nutrition at the same time that the plant’s defensive metabolism is elicited. Since PGPR may use different mechanisms to achieve these goals, our rationale was to evaluate if a combination of PGPR with different mechanisms would result in better effects than upon simple applications, evaluating changes in growth and IF contents in early stages of bean development and protection against leaf pathogen.
Two different experiments were carried out to address these goals. A short experiment in which the consortium and the individual PGPR were inoculated on two-day old pre-germinated seeds sown on sterile pots filled with vermiculite. Six days after inoculation, photosynthesis was measured and seedlings were harvested. Weight and height of shoots, cotyledons and roots were registered and IF in shoots (free of cotyledons) and roots were analyzed by HPLC. On the second experiment, pre-germinated seeds were transferred to 500ml pots and inoculated twice with the consortium or the individual bacteria, one upon and the second 12 days after; six days after transplant the second inoculation, plants were pathogen challenged and one week after, disease symptoms were recorded. All strains were able to prime the plant since all decreased plant height in the short experiment, indicating that plants detour C metabolism to defensive metabolism compromising growth (Conrath et al., 2002). Despite these changes in total IF were non significant under any treatment, including the consortium, this was not correlated to protection achieved on long experiments. Individual strains performed a lot better than the consortium, that even increased the disease symptoms; interestingly BB1 significantly increased daidzin levels coupled to a decrease on its aglycon and these plants showed the lowest disease incidence (85% protection). Therefore, based on these data, it may be concluded that the consortium does not seem to provide any advantage to the use of individual strains when considering biofertilizers formulation, and systemic protection may be associated to other metabolites different from IF.

The beneficial fungus *Piriformospora indica* induces fast root surface pH signaling and primes systemic alkalization of the leaf apoplast upon powdery mildew infection

K. H. Kogel, F. Waller, A. Molitor, and H. Felle .. 231

Abstract only

Soilborne fungi alter the composition of tomato leaf compounds

D. Kranz, J. Novak, S. Steinkellner .. 232

Abstract only

Functional analysis of nox1 gene of *Trichoderma harzianum*
and its role in ROS production

M. Montero-Barrientos, E. Morán-Diez, R. E. Cardoza, S. Gutiérrez, R. Hermosa and E. Monte .. 233

Abstract only

Optimal defense in pine trees: constitutive and induced allocation of resin and polyphenolics in *Pinus radiata*

Xoaquín Moreira, Ana Hernández, Luis Sampedro, Rafel Zas .. 235-239

Abstract: Optimal defense theory is based on the assumption that the within-plant allocation of defensive secondary metabolites is driven by the relative contribution to the overall fitness of particular plant tissues and their value in terms of costs. In this study, we examined the constitutive and methyl jasmonate-induced strategy of optimal allocation of the two major pine defenses, resin and polyphenolics, to two tissues with contrasting fitness value, stem and needles, along three parts of the plants (basal, medium and upper apical part) in *Pinus radiata* Don. seedlings. Induced responses of pine trees to methyl jasmonate were based on increased concentrations of total phenolics in leaves and resin compounds in the stem, but not significant changes were observed for phenolics in phloem either resin in needles. We observed a marked gradient of allocation within the plant, with different patterns between basal, medium and apical tissues of the pines. Resin content in the stem tissues was greater along an upward gradient. However, in leave tissues, both resin and phenolics content became greater along a downwards gradient. Our results indicate a marked pattern of allocation of defenses along the plant and among tissues relevant for plant fitness, which constitute the first confirmation of the Optimal Defense Theory for pine trees.
Impact of a natural elicitor for the biological protection of a major tropical crop: the banana
E. Nieto Charques and M. N. Ducamp-Collin ... 240
Abstract only

Herbivore induced changes in resource partitioning
C. M. Orians, E. Erkenbrack and C. Roma ... 241
Abstract only

Trichoderma atroviride SC1 induces local and systemic resistance against grapevine downy mildew
Michele Perazzolli, Giacomo Cestari and Ilaria Pertot.. 243-246
Abstract: Several Trichoderma strains are active against numerous plant pathogens, and therefore used as biocontrol agents (BCAs). The fungal strain T. atroviride SC1 was isolated in northern Italy from decayed hazelnut wood and it is effective against several grapevine pathogens (i.e. Botrytis cinerea, Armillaria mellea, Podosphaera xanthii). T. harzianum T39 can induce systemic resistance in plants, but this capability has not been documented for the grapevine – T. atroviride SC1 interaction. Our aims were to evaluate the efficacy of T. atroviride SC1 against grapevine downy mildew (Plasmopara viticola) and to characterize its mechanism of action. Applications of T. atroviride SC1 conidia activated a local and systemic resistance against grapevine downy mildew severity similarly to T. harzianum T39 treatments. However, the effect of these two Trichoderma strains is weaker than the standard copper treatment. From a practical point of view, Trichoderma spp. can be regarded as a tool to reduced susceptibility of grapevine to downy mildew, rather than an alternative to fungicides, but the integration of resistance inducers is required in order to reach a satisfactory efficacy level.

Effects of elicitor treatment on the development of tomato and the interaction of root-knot nematodes
S. Sanz-Alférez and R. Mochales .. 247
Abstract only

Elicitors from biocontrol Fusarium sambucinum and Pseudomonas fluorescens protect wheat from multiple fungal pathogens
Larisa Shcherbakova, Julia Semina, Daria Shumilina, Deborah Fravel, Luba Dorofeeva ... 249-253
Abstract: To determine if elicitors produced by biocontrol F. sambucinum (isolate FS-94) and P. fluorescens (strain 197) were able to induce spring wheat resistance against multiple pathogens, intracellular and extracellular elicitors of FS-94 as well as MF3-protein of 197 were used for treatment. The treatment of wheat seeds was conducted before their artificial inoculation with F. culmorum or seeds naturally infected with agents of root rots. Intracellular elicitors of FS-94 induced resistance in spring wheat against multiple fungi belonging to pathogenic root rot complex in Non-Chernozem zone of Russia (F. culmorum, F. avenaceum, F. oxysporum, F. sporotrichioides, F. gibbosum, B. sorokiniana). These elicitors decreased the incidence and severity of the diseases, reduced pathogen infectivity and suppressed sporulation of all tested root rot agents, except F. avenaceum. Extracellular elicitors of FS-94 and MF3 induced no wheat resistance to Fusaria. The both types of FS-94 elicitors prevented Stagonospora nodorum development on wheat leaves, while MF3 was active against St. nodorum only in combination with chitosan.

Effects of foliar nutrition on the reduction of diseases in extensive crops. Field studies in Argentina
Margarita Sillon, Hugo Fontanetto, Jorge Shell and Edgardo Arévalo 255-258
Abstract: With the objective of studying the effect of foliar nutrition as a tool to improve the tolerance to diseases we conducted eight trials on Glycine max, four on Triticum aestivum and
two on *Zea mays*, with a total of fourteen evaluation sites and four growing seasons (2005/2009). We monitored epidemics and yield in plots with or without foliar fertilizer application in production conditions in Argentina. The fertilizers under study were Nitrofoska® Foliar PS and Fetrilon® Combi. The results on soybean show a significant reduction of *Septoria glycines* levels and an increase in yield in plots treated with the foliar fertilizers. Median yields were 2600kg/ha, with a variation between 1900 and 3500kg/ha. With foliar nutrient applications, we obtained a median yield of 3204kg/ha, with the highest production at 4000kg/ha, representing improvements of 23%. In part, these improvements were due to a reduction in bacterial infections (*Pseudomonas syringae* pv *glycines* and *Xanthomonas axonopodis* pv *glycines*) because the crops with nutrient application showed leaves with better foliar structure, which decreased susceptibility to injury. The epidemiological monitoring on maize showed a reduction of symptoms caused by *Exserohilum* spp. and *Helminthosporium* spp. in the nutrient treated plots. The best results in terms of final crop health were achieved in the treatments at the flowering period which, allowed yield improvements by 7-12%, entailing an increase of up to 1000 kg/ha. In the wheat crop the study object was leaf spots caused by *Pyrenophora tritici-repentis* and *Septoria tritici*. We compared nutrient application at stages 2.3-3.1 and 4.0-4.5 of the Zadoks developmental scale. Nutrient treatments resulted in yield improvement in all the evaluation sites. During dry seasons, the most favorable application time was at Zadoks stage 2.3-3.1, with improvements of 9-43%. In wet years the best application time was during Zadoks 4.0-4.5, with yield improvements up to 46% and reduction in disease severity of up to 60% compared to the untreated control. The results of these studies confirm the importance of foliar nutrition with micronutrients as a complementary tool in strategies of disease management to obtain a sustainable agro system.

Induction of systemic acquired resistance for the integrated management of TYLCD in greenhouse tomatoes

Antonella Sirigu, Francesco Chessa, Federico Corda and Mauro Nannini 259-262

Abstract: The use of acibenzolar-S-methyl (ASM) for inducing systemic acquired resistance is a recommended practice for the management of several plant pathogens. During 2007-2008, three trials were carried out in commercial greenhouses in southern Sardinia (Italy) to evaluate the effects of this resistance elicitor on the spread of Tomato yellow leaf curl disease in protected tomato crops. In keeping with an integrated approach to crop protection, the efficacy of ASM was evaluated alone and in combination with non-woven row covers (NWRC) during the first weeks of the cropping period, a tactic adopted in recent years by a considerable number of growers on the Island. The results obtained in our experiments suggest that ASM may be a suitable means for TYLCD management. However its efficacy is strongly dependent on correct dosage and application frequency in relation to the actual dynamics of disease spread through the crop. The most interesting results were achieved when moderate infection progression was treated by integrating the use of non-woven fabric with early and frequent applications of ASM over an adequate period of time. The use of NWRC, by limiting disease pressure, creates more favourable conditions for the deployment of effective plant defence responses. However, the definition of IP&DM strategy based on the combination of these two tactics requires careful regulation of ASM applications not yet determined for TYLCD control.

Induced resistance against powdery mildew in wheat – a chance for less known inducers

Lubomir Vechet and Lenka Burketova ... 263-267

Abstract: Efficiency of compounds of both synthetic and biological origin on powdery mildew (*Blumeria graminis* f.sp. *tritici*) severity was tested on wheat cultivar Kanzler (susceptible standard) under field conditions in small plot experiments in 2004-2008. Plants were sprayed by extracts of several plants, with possible biological effect – oak bark (OB), curcuma (CU), ginger (GI), giant knotweed (RS), glycine betaine (GB), and known resistance inducers – benzo thiadiazole (BTH) and salicylic acid (SA). Untreated Kanzler was used as a control (CO). In the year 2004 disease severity of powdery mildew was the highest, and in other years was
changing. Untreated control demonstrated much more disease severity than the same cultivar treated by individual inducers. Disease severity after treatment with inducers was the lowest on BTH- and GI-treated and the highest on SA- and OB-treated plants. In 2008, when the disease incidence was extremely low, application of inducers resulted in diverse results. Preponderance of application dates except the first treatment by GB produced lower disease severity than CO. The earlier treatment by CU induced the lowest disease severity in comparison with other treatments. In general, the experiments showed long-term suppression of the powdery mildew severity on wheat.

A Fusarium oxysporum extract induces resistance against Botrytis in pepper plants
J. Veloso and J. Díaz ... 269-272
Abstract: Fusarium oxysporum f. sp. lycopersici (FOL) has proved to be a protective agent in pepper against several pathogens, namely, Verticillium dahliae, Phytophthora capsici and Botrytis cinerea (Díaz et al., 2005). The mechanism of such protection seems to be induced resistance and ethylene signalling is needed for it (Díaz et al., 2005). Induction by FOL caused an increase in chitinase activity and cell wall phenolics as well as enhancement of expression of defense genes (Díaz et al., 2005; Silvar et al., 2009). The induction of resistance in plants is due to the recognition by the plant of MAMPs that trigger a response that prime or activate the resistance mechanisms. In the present study, we just started the research to try to unravel the effects of MAMPs derived from FOL. In practice, FOL could not be used for biocontrol because it is a pathogen of tomato, but a MAMP derived from FOL would be agronomically acceptable.

Our approach was using an autoclaved extract of Fusarium oxysporum f. sp. lycopersici to induce plants. The plant roots were exposed to the extract and 48 hours later plants were challenged with a pathogen. Plant challenge was carried out in some plants on the leaves with the airborne fungus Botrytis cinerea. In other plants, the roots were challenge inoculated with the soilborne fungus Verticillium dahliae. The extract treatment controlled partially the infection of the leaves by the necrotroph Botrytis cinerea while it did not protect the plant against the fungus Verticillium dahliae.

Samples of the root and leaves were taken after the induction and after the infection for enzyme and gene expression assays. Peroxidase and chitinase activities were measured, but no changes were observed. The expression level of a set of genes related with resistance mechanisms was obtained through Real Time RT-PCR. All the genes were up-regulated by the FOL extract, both in the roots and the leaves.

Effect of hexanoic acid against hemibiotrophs in tomato plants
B. Vicedo, L. Scalschi, V. Flors, G. Camañes, C. González-Bosch and P. García-Agustín ... 273
Abstract only

Methyl Jasmonate fails to induce resistance of Pinus pinaster seedlings against Fusarium oxysporum and F. circinatum
M. Vivas and A. Solla ... 274
Abstract only

The efficiency of some bacteria as a microbiological control agent to cotton leaf worms in Egypt
Abstract: The efficiency of thirty bacterial strains to control leaf cotton worms (Spodoptera littoralis), was investigated. These bacterial strains were originally isolated from dead spiny cotton bollworms (Erias insulana). Leaf cotton worms were fed for four days on castor bean (Ricinus communis) leaves (as a substitute to cotton leaves), which were soaked for 30 minutes in suspensions of four-days old bacterial cultures. The efficiency of bacterial species was relatively high. About 19 strains killed over 10% of cotton leaf worms and ten of these strains were highly offensive, killing about 20-60% of leaf cotton worms. The most offensive strains (ten strains)
were selected for further bacteriological studies. Preliminary characterization of the bacterial strains revealed that all strains were gram positive rod-shaped with variable morphology. Eight strains were identified as spore-forming species and two strains were gram-positive non-spore-forming rods. Some phenotypic tests (e.g., salt tolerance, heat tolerance, and some enzymatic activities) were done. The spore-forming rods were related to the genera *Bacillus* and *Paenibacillus*. The results pointed out that the bacterial strains in this study could be good candidates for biological control of the destructive cotton pests (leaf worms and spiny or pink bollworms) in Egypt.

Induction of systemic resistance of tomato to root-knot nematodes by biogenic elicitors

S. V. Zinovieva, N. I. Vasyukova, Zh. V. Udalova, N. G. Gerasimova and O. L. Ozeretskovskaya .. 281-284

Abstract: Biogenic elicitors (chitosan and arachidonic acid) induced systemic resistance of tomato plants to root-knot nematode *Meloidogyne incognita*. The addition of signal molecules (salicylic and jasmonic acid) to elicitors increased their activity as immunomodulators.